|
|
|
@ -203,7 +203,8 @@
|
|
|
|
|
|
|
|
|
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
int xy_travel_speed = XY_TRAVEL_SPEED;
|
|
|
|
|
int xy_travel_speed = XY_TRAVEL_SPEED;
|
|
|
|
|
float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
#endif
|
|
|
|
|
int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
|
|
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
|
|
@ -255,7 +256,6 @@ float home_offset[3] = { 0, 0, 0 };
|
|
|
|
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
|
|
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
|
|
|
bool axis_known_position[3] = { false, false, false };
|
|
|
|
|
float zprobe_zoffset;
|
|
|
|
|
|
|
|
|
|
// Extruder offset
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
@ -1097,9 +1097,6 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
|
|
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
@ -1113,11 +1110,13 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
|
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
|
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
|
|
|
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
|
|
|
|
|
|
|
|
|
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
|
|
|
|
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
|
|
|
|
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
|
|
|
|
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
|
|
|
|
if (planeNormal.z < 0) {
|
|
|
|
|
planeNormal.x = -planeNormal.x;
|
|
|
|
|
planeNormal.y = -planeNormal.y;
|
|
|
|
|
planeNormal.z = -planeNormal.z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
|
|
|
|
|
@ -1126,11 +1125,7 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
|
|
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
|
|
|
|
|
|
// put the bed at 0 so we don't go below it.
|
|
|
|
|
current_position[Z_AXIS] = zprobe_zoffset;
|
|
|
|
|
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
@ -2017,8 +2012,19 @@ inline void gcode_G28() {
|
|
|
|
|
endstops_hit_on_purpose();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* G29: Mesh-based Z-Probe, probes a grid and produces a
|
|
|
|
|
* mesh to compensate for variable bed height
|
|
|
|
|
*
|
|
|
|
|
* Parameters With MESH_BED_LEVELING:
|
|
|
|
|
*
|
|
|
|
|
* S0 Produce a mesh report
|
|
|
|
|
* S1 Start probing mesh points
|
|
|
|
|
* S2 Probe the next mesh point
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_G29() {
|
|
|
|
|
static int probe_point = -1;
|
|
|
|
|
int state = 0;
|
|
|
|
@ -2060,7 +2066,7 @@ inline void gcode_G28() {
|
|
|
|
|
} else if (state == 2) { // Goto next point
|
|
|
|
|
|
|
|
|
|
if (probe_point < 0) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
int ix, iy;
|
|
|
|
@ -2070,16 +2076,14 @@ inline void gcode_G28() {
|
|
|
|
|
} else {
|
|
|
|
|
ix = (probe_point-1) % MESH_NUM_X_POINTS;
|
|
|
|
|
iy = (probe_point-1) / MESH_NUM_X_POINTS;
|
|
|
|
|
if (iy&1) { // Zig zag
|
|
|
|
|
ix = (MESH_NUM_X_POINTS - 1) - ix;
|
|
|
|
|
}
|
|
|
|
|
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
|
|
|
|
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
|
|
|
|
st_synchronize();
|
|
|
|
|
}
|
|
|
|
|
if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mesh done.\n");
|
|
|
|
|
if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mesh probing done.\n");
|
|
|
|
|
probe_point = -1;
|
|
|
|
|
mbl.active = 1;
|
|
|
|
|
enquecommands_P(PSTR("G28"));
|
|
|
|
@ -2087,9 +2091,7 @@ inline void gcode_G28() {
|
|
|
|
|
}
|
|
|
|
|
ix = probe_point % MESH_NUM_X_POINTS;
|
|
|
|
|
iy = probe_point / MESH_NUM_X_POINTS;
|
|
|
|
|
if (iy&1) { // Zig zag
|
|
|
|
|
ix = (MESH_NUM_X_POINTS - 1) - ix;
|
|
|
|
|
}
|
|
|
|
|
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
|
|
|
|
current_position[X_AXIS] = mbl.get_x(ix);
|
|
|
|
|
current_position[Y_AXIS] = mbl.get_y(iy);
|
|
|
|
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
|
|
|
@ -2098,9 +2100,7 @@ inline void gcode_G28() {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
#elif defined(ENABLE_AUTO_BED_LEVELING)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
|
|
|
@ -2116,8 +2116,9 @@ inline void gcode_G28() {
|
|
|
|
|
*
|
|
|
|
|
* S Set the XY travel speed between probe points (in mm/min)
|
|
|
|
|
*
|
|
|
|
|
* D Dry-Run mode. Just evaluate the bed Topology - It does not apply or clean the rotation Matrix
|
|
|
|
|
* Useful to check the topology after a first run of G29.
|
|
|
|
|
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
|
|
|
|
* or clean the rotation Matrix. Useful to check the topology
|
|
|
|
|
* after a first run of G29.
|
|
|
|
|
*
|
|
|
|
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
|
|
|
*
|
|
|
|
@ -2165,9 +2166,9 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
#ifdef AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
|
|
|
|
#endif
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 0)
|
|
|
|
|
{
|
|
|
|
@ -2224,7 +2225,7 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
|
|
|
dock_sled(false); // engage (un-dock) the probe
|
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
|
|
|
|
engage_z_probe();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
@ -2234,19 +2235,18 @@ inline void gcode_G28() {
|
|
|
|
|
{
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
reset_bed_level();
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
|
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
|
|
|
//corrected_position.debug("position before G29");
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
|
|
|
// uncorrected_position.debug("position during G29");
|
|
|
|
|
|
|
|
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
#else //!DELTA
|
|
|
|
|
|
|
|
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
|
|
|
|
//vector_3 corrected_position = plan_get_position_mm();
|
|
|
|
|
//corrected_position.debug("position before G29");
|
|
|
|
|
plan_bed_level_matrix.set_to_identity();
|
|
|
|
|
vector_3 uncorrected_position = plan_get_position();
|
|
|
|
|
//uncorrected_position.debug("position during G29");
|
|
|
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
|
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
|
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
@ -2261,26 +2261,24 @@ inline void gcode_G28() {
|
|
|
|
|
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
|
|
|
|
const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
// solve the plane equation ax + by + d = z
|
|
|
|
|
// A is the matrix with rows [x y 1] for all the probed points
|
|
|
|
|
// B is the vector of the Z positions
|
|
|
|
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
|
|
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
|
|
|
|
|
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
|
|
|
|
|
|
|
|
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
|
|
|
|
eqnBVector[abl2], // "B" vector of Z points
|
|
|
|
|
mean = 0.0;
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
delta_grid_spacing[0] = xGridSpacing;
|
|
|
|
|
delta_grid_spacing[1] = yGridSpacing;
|
|
|
|
|
|
|
|
|
|
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
delta_grid_spacing[0] = xGridSpacing;
|
|
|
|
|
delta_grid_spacing[1] = yGridSpacing;
|
|
|
|
|
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
|
|
|
|
|
#else // !DELTA
|
|
|
|
|
// solve the plane equation ax + by + d = z
|
|
|
|
|
// A is the matrix with rows [x y 1] for all the probed points
|
|
|
|
|
// B is the vector of the Z positions
|
|
|
|
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
|
|
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
|
|
|
|
|
|
|
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
|
|
|
|
|
|
|
|
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
|
|
|
|
eqnBVector[abl2], // "B" vector of Z points
|
|
|
|
|
mean = 0.0;
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
|
|
|
|
|
int probePointCounter = 0;
|
|
|
|
|
bool zig = true;
|
|
|
|
@ -2313,12 +2311,12 @@ inline void gcode_G28() {
|
|
|
|
|
float measured_z,
|
|
|
|
|
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
|
|
|
|
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
|
|
|
|
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
|
|
|
|
|
if (distance_from_center > DELTA_PROBABLE_RADIUS)
|
|
|
|
|
continue;
|
|
|
|
|
#endif //DELTA
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
|
|
|
|
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
|
|
|
|
|
if (distance_from_center > DELTA_PROBABLE_RADIUS)
|
|
|
|
|
continue;
|
|
|
|
|
#endif //DELTA
|
|
|
|
|
|
|
|
|
|
// Enhanced G29 - Do not retract servo between probes
|
|
|
|
|
ProbeAction act;
|
|
|
|
@ -2335,16 +2333,16 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
mean += measured_z;
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
mean += measured_z;
|
|
|
|
|
|
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
|
|
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
|
|
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
|
|
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
|
|
|
#else
|
|
|
|
|
bed_level[xCount][yCount] = measured_z + z_offset;
|
|
|
|
|
#endif
|
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
|
|
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
|
|
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
|
|
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
|
|
|
#else
|
|
|
|
|
bed_level[xCount][yCount] = measured_z + z_offset;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
probePointCounter++;
|
|
|
|
|
} //xProbe
|
|
|
|
@ -2352,60 +2350,64 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
// solve lsq problem
|
|
|
|
|
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
|
|
|
|
|
|
|
|
|
mean /= abl2;
|
|
|
|
|
|
|
|
|
|
if (verbose_level) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(mean, 8);
|
|
|
|
|
#ifdef DELTA
|
|
|
|
|
|
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
|
|
|
print_bed_level();
|
|
|
|
|
|
|
|
|
|
#else // !DELTA
|
|
|
|
|
|
|
|
|
|
// solve lsq problem
|
|
|
|
|
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
|
|
|
|
|
|
|
|
|
mean /= abl2;
|
|
|
|
|
|
|
|
|
|
if (verbose_level) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(mean, 8);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Show the Topography map if enabled
|
|
|
|
|
if (do_topography_map) {
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
|
|
|
|
|
|
|
|
|
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
|
|
|
|
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
|
|
|
|
int ind = yy * auto_bed_leveling_grid_points + xx;
|
|
|
|
|
float diff = eqnBVector[ind] - mean;
|
|
|
|
|
if (diff >= 0.0)
|
|
|
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
|
|
|
else
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
|
|
|
} // xx
|
|
|
|
|
// Show the Topography map if enabled
|
|
|
|
|
if (do_topography_map) {
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
|
|
|
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
|
|
|
|
|
|
|
|
|
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
|
|
|
|
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
|
|
|
|
int ind = yy * auto_bed_leveling_grid_points + xx;
|
|
|
|
|
float diff = eqnBVector[ind] - mean;
|
|
|
|
|
if (diff >= 0.0)
|
|
|
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
|
|
|
else
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
|
|
|
} // xx
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
} // yy
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
} // yy
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
} //do_topography_map
|
|
|
|
|
} //do_topography_map
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
|
free(plane_equation_coefficients);
|
|
|
|
|
#else //Delta
|
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
|
|
|
print_bed_level();
|
|
|
|
|
#endif //Delta
|
|
|
|
|
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
|
free(plane_equation_coefficients);
|
|
|
|
|
|
|
|
|
|
#endif //!DELTA
|
|
|
|
|
|
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
@ -2428,35 +2430,36 @@ inline void gcode_G28() {
|
|
|
|
|
|
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
|
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
|
|
|
#ifndef DELTA
|
|
|
|
|
if (verbose_level > 0)
|
|
|
|
|
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
|
|
|
|
|
|
|
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
|
|
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
|
|
|
// When the bed is uneven, this height must be corrected.
|
|
|
|
|
if (!dryrun)
|
|
|
|
|
{
|
|
|
|
|
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
z_tmp = current_position[Z_AXIS];
|
|
|
|
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
|
|
|
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
|
|
|
|
// When the bed is uneven, this height must be corrected.
|
|
|
|
|
if (!dryrun)
|
|
|
|
|
{
|
|
|
|
|
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
|
|
|
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
|
|
|
z_tmp = current_position[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
|
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
|
|
|
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
|
|
|
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
#endif // !DELTA
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
|
|
|
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY)
|
|
|
|
|
retract_z_probe();
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef Z_PROBE_SLED
|
|
|
|
|
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
|
|
|
|
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
|
|
|
|
retract_z_probe();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef Z_PROBE_END_SCRIPT
|
|
|
|
|
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
|
|
|
st_synchronize();
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef Z_PROBE_END_SCRIPT
|
|
|
|
|
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
|
|
|
st_synchronize();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifndef Z_PROBE_SLED
|
|
|
|
@ -2919,7 +2922,7 @@ inline void gcode_M42() {
|
|
|
|
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
|
|
|
|
|
|
|
|
|
if (n_legs) {
|
|
|
|
|
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
|
|
|
|
double radius=0.0, theta=0.0;
|
|
|
|
|
int l;
|
|
|
|
|
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
|
|
|
|
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
|
|
|
@ -3545,7 +3548,6 @@ inline void gcode_M200() {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float area = .0;
|
|
|
|
|
if (code_seen('D')) {
|
|
|
|
|
float diameter = code_value();
|
|
|
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
|
|
@ -4283,7 +4285,7 @@ inline void gcode_M502() {
|
|
|
|
|
* M503: print settings currently in memory
|
|
|
|
|
*/
|
|
|
|
|
inline void gcode_M503() {
|
|
|
|
|
Config_PrintSettings(code_seen('S') && code_value == 0);
|
|
|
|
|
Config_PrintSettings(code_seen('S') && code_value() == 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
@ -4580,9 +4582,14 @@ inline void gcode_T() {
|
|
|
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
boolean make_move = false;
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
bool make_move = false;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (code_seen('F')) {
|
|
|
|
|
make_move = true;
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
make_move = true;
|
|
|
|
|
#endif
|
|
|
|
|
next_feedrate = code_value();
|
|
|
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
|
|
|
}
|
|
|
|
@ -5179,20 +5186,22 @@ void ClearToSend()
|
|
|
|
|
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void get_coordinates()
|
|
|
|
|
{
|
|
|
|
|
bool seen[4]={false,false,false,false};
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
|
|
|
|
if(code_seen(axis_codes[i]))
|
|
|
|
|
{
|
|
|
|
|
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
|
|
|
|
seen[i]=true;
|
|
|
|
|
void get_coordinates() {
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
|
|
|
float dest;
|
|
|
|
|
if (code_seen(axis_codes[i])) {
|
|
|
|
|
dest = code_value();
|
|
|
|
|
if (axis_relative_modes[i] || relative_mode)
|
|
|
|
|
dest += current_position[i];
|
|
|
|
|
}
|
|
|
|
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
|
|
|
|
else
|
|
|
|
|
dest = current_position[i];
|
|
|
|
|
|
|
|
|
|
destination[i] = dest;
|
|
|
|
|
}
|
|
|
|
|
if(code_seen('F')) {
|
|
|
|
|
if (code_seen('F')) {
|
|
|
|
|
next_feedrate = code_value();
|
|
|
|
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
|
|
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|