Include sync_plan_position_delta for SCARA also

master
Scott Lahteine 10 years ago
parent 18bb6be80e
commit 1c7391717e

@ -1034,7 +1034,7 @@ inline void line_to_destination() {
inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#ifdef DELTA
#if defined(DELTA) || defined(SCARA)
inline void sync_plan_position_delta() {
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
@ -2177,8 +2177,7 @@ inline void gcode_G28() {
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
#endif
if (verbose_level > 0)
{
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
}
@ -2253,7 +2252,6 @@ inline void gcode_G28() {
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
sync_plan_position();
#endif // !DELTA
}
@ -2264,8 +2262,8 @@ inline void gcode_G28() {
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
#ifdef DELTA
delta_grid_spacing[0] = xGridSpacing;
@ -5255,104 +5253,99 @@ void clamp_to_software_endstops(float target[3])
}
#ifdef DELTA
void recalc_delta_settings(float radius, float diagonal_rod)
{
delta_tower1_x= -SIN_60*radius; // front left tower
delta_tower1_y= -COS_60*radius;
delta_tower2_x= SIN_60*radius; // front right tower
delta_tower2_y= -COS_60*radius;
delta_tower3_x= 0.0; // back middle tower
delta_tower3_y= radius;
delta_diagonal_rod_2= sq(diagonal_rod);
}
void calculate_delta(float cartesian[3])
{
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower1_x-cartesian[X_AXIS])
- sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower2_x-cartesian[X_AXIS])
- sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower3_x-cartesian[X_AXIS])
- sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower1_x = -SIN_60 * radius; // front left tower
delta_tower1_y = -COS_60 * radius;
delta_tower2_x = SIN_60 * radius; // front right tower
delta_tower2_y = -COS_60 * radius;
delta_tower3_x = 0.0; // back middle tower
delta_tower3_y = radius;
delta_diagonal_rod_2 = sq(diagonal_rod);
}
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
*/
}
void calculate_delta(float cartesian[3]) {
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower1_x-cartesian[X_AXIS])
- sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower2_x-cartesian[X_AXIS])
- sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower3_x-cartesian[X_AXIS])
- sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
*/
}
#ifdef ENABLE_AUTO_BED_LEVELING
// Adjust print surface height by linear interpolation over the bed_level array.
int delta_grid_spacing[2] = { 0, 0 };
void adjust_delta(float cartesian[3])
{
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
return; // G29 not done
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
int floor_x = floor(grid_x);
int floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x;
float ratio_y = grid_y - floor_y;
float z1 = bed_level[floor_x+half][floor_y+half];
float z2 = bed_level[floor_x+half][floor_y+half+1];
float z3 = bed_level[floor_x+half+1][floor_y+half];
float z4 = bed_level[floor_x+half+1][floor_y+half+1];
float left = (1-ratio_y)*z1 + ratio_y*z2;
float right = (1-ratio_y)*z3 + ratio_y*z4;
float offset = (1-ratio_x)*left + ratio_x*right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
#ifdef ENABLE_AUTO_BED_LEVELING
/*
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
*/
}
#endif //ENABLE_AUTO_BED_LEVELING
// Adjust print surface height by linear interpolation over the bed_level array.
int delta_grid_spacing[2] = { 0, 0 };
void adjust_delta(float cartesian[3]) {
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float h1 = 0.001 - half, h2 = half - 0.001,
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level[floor_x + half][floor_y + half],
z2 = bed_level[floor_x + half][floor_y + half + 1],
z3 = bed_level[floor_x + half + 1][floor_y + half],
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4,
offset = (1 - ratio_x) * left + ratio_x * right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
/*
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
*/
}
#endif // ENABLE_AUTO_BED_LEVELING
void prepare_move_raw()
{
previous_millis_cmd = millis();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
void prepare_move_raw() {
previous_millis_cmd = millis();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
}
}
#endif //DELTA
#endif // DELTA
#if defined(MESH_BED_LEVELING)
#if !defined(MIN)
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
#endif // ! MIN
#if !defined(MIN)
#define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
#endif // ! MIN
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
{
@ -5424,8 +5417,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
}
#endif // MESH_BED_LEVELING
void prepare_move()
{
void prepare_move() {
clamp_to_software_endstops(destination);
previous_millis_cmd = millis();
@ -5539,7 +5531,7 @@ void prepare_move()
}
#endif //DUAL_X_CARRIAGE
#if ! (defined DELTA || defined SCARA)
#if !defined(DELTA) && !defined(SCARA)
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
line_to_destination();

Loading…
Cancel
Save