Patch G33 misuse of PROBE_MANUALLY

master
Scott Lahteine 7 years ago
parent 69a7d4e0a5
commit 1d0739d6d1

@ -453,13 +453,6 @@
*/ */
#define HAS_Z_SERVO_ENDSTOP (defined(Z_ENDSTOP_SERVO_NR) && Z_ENDSTOP_SERVO_NR >= 0) #define HAS_Z_SERVO_ENDSTOP (defined(Z_ENDSTOP_SERVO_NR) && Z_ENDSTOP_SERVO_NR >= 0)
/**
* UBL has its own manual probing, so this just causes trouble.
*/
#if ENABLED(AUTO_BED_LEVELING_UBL)
#undef PROBE_MANUALLY
#endif
/** /**
* Set a flag for any enabled probe * Set a flag for any enabled probe
*/ */

@ -1062,11 +1062,6 @@
// Add commands that need sub-codes to this list // Add commands that need sub-codes to this list
#define USE_GCODE_SUBCODES ENABLED(G38_PROBE_TARGET) || ENABLED(CNC_COORDINATE_SYSTEMS) #define USE_GCODE_SUBCODES ENABLED(G38_PROBE_TARGET) || ENABLED(CNC_COORDINATE_SYSTEMS)
// MESH_BED_LEVELING overrides PROBE_MANUALLY
#if ENABLED(MESH_BED_LEVELING)
#undef PROBE_MANUALLY
#endif
// Parking Extruder // Parking Extruder
#if ENABLED(PARKING_EXTRUDER) #if ENABLED(PARKING_EXTRUDER)
#ifndef PARKING_EXTRUDER_GRAB_DISTANCE #ifndef PARKING_EXTRUDER_GRAB_DISTANCE

@ -5450,676 +5450,672 @@ void home_all_axes() { gcode_G28(true); }
#endif // HAS_BED_PROBE #endif // HAS_BED_PROBE
#if PROBE_SELECTED #if ENABLED(DELTA_AUTO_CALIBRATION)
#if ENABLED(DELTA_AUTO_CALIBRATION) constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
_4P_STEP = _7P_STEP * 2, // 4-point step
constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points NPP = _7P_STEP * 6; // number of calibration points on the radius
_4P_STEP = _7P_STEP * 2, // 4-point step enum CalEnum { // the 7 main calibration points - add definitions if needed
NPP = _7P_STEP * 6; // number of calibration points on the radius CEN = 0,
enum CalEnum { // the 7 main calibration points - add definitions if needed __A = 1,
CEN = 0, _AB = __A + _7P_STEP,
__A = 1, __B = _AB + _7P_STEP,
_AB = __A + _7P_STEP, _BC = __B + _7P_STEP,
__B = _AB + _7P_STEP, __C = _BC + _7P_STEP,
_BC = __B + _7P_STEP, _CA = __C + _7P_STEP,
__C = _BC + _7P_STEP, };
_CA = __C + _7P_STEP,
};
#define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
#define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N) #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
#define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N) #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
#define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1) #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
#define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP) #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
#define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP) #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
static void print_signed_float(const char * const prefix, const float &f) { static void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
serialprintPGM(prefix); serialprintPGM(prefix);
SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOLCHAR(':');
if (f >= 0) SERIAL_CHAR('+'); if (f >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(f, 2); SERIAL_PROTOCOL_F(f, 2);
} }
static void print_G33_settings(const bool end_stops, const bool tower_angles) { static void print_G33_settings(const bool end_stops, const bool tower_angles) {
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (end_stops) { if (end_stops) {
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]); print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]); print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]); print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
} }
if (end_stops && tower_angles) { if (end_stops && tower_angles) {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
if (tower_angles) {
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
}
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL(); SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
} }
if (tower_angles) {
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
}
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL();
}
static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) { static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
SERIAL_PROTOCOLPGM(". "); SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_at_pt[CEN]); print_signed_float(PSTR("c"), z_at_pt[CEN]);
if (tower_points) { if (tower_points) {
print_signed_float(PSTR(" x"), z_at_pt[__A]); print_signed_float(PSTR(" x"), z_at_pt[__A]);
print_signed_float(PSTR(" y"), z_at_pt[__B]); print_signed_float(PSTR(" y"), z_at_pt[__B]);
print_signed_float(PSTR(" z"), z_at_pt[__C]); print_signed_float(PSTR(" z"), z_at_pt[__C]);
} }
if (tower_points && opposite_points) { if (tower_points && opposite_points) {
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
if (opposite_points) {
print_signed_float(PSTR("yz"), z_at_pt[_BC]);
print_signed_float(PSTR("zx"), z_at_pt[_CA]);
print_signed_float(PSTR("xy"), z_at_pt[_AB]);
}
SERIAL_EOL(); SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
if (opposite_points) {
print_signed_float(PSTR("yz"), z_at_pt[_BC]);
print_signed_float(PSTR("zx"), z_at_pt[_CA]);
print_signed_float(PSTR("xy"), z_at_pt[_AB]);
} }
SERIAL_EOL();
}
/** /**
* After G33: * After G33:
* - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only) * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
* - Stow the probe * - Stow the probe
* - Restore endstops state * - Restore endstops state
* - Select the old tool, if needed * - Select the old tool, if needed
*/ */
static void G33_cleanup( static void G33_cleanup(
#if HOTENDS > 1 #if HOTENDS > 1
const uint8_t old_tool_index const uint8_t old_tool_index
#endif #endif
) { ) {
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE) #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
do_blocking_move_to_z(delta_clip_start_height); do_blocking_move_to_z(delta_clip_start_height);
#endif #endif
STOW_PROBE(); STOW_PROBE();
clean_up_after_endstop_or_probe_move(); clean_up_after_endstop_or_probe_move();
#if HOTENDS > 1 #if HOTENDS > 1
tool_change(old_tool_index, 0, true); tool_change(old_tool_index, 0, true);
#endif #endif
} }
static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
const bool _0p_calibration = probe_points == 0, const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1, _1p_calibration = probe_points == 1,
_4p_calibration = probe_points == 2, _4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set, _4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3 || probe_points == 0, _7p_calibration = probe_points >= 3 || probe_points == 0,
_7p_no_intermediates = probe_points == 3, _7p_no_intermediates = probe_points == 3,
_7p_1_intermediates = probe_points == 4, _7p_1_intermediates = probe_points == 4,
_7p_2_intermediates = probe_points == 5, _7p_2_intermediates = probe_points == 5,
_7p_4_intermediates = probe_points == 6, _7p_4_intermediates = probe_points == 6,
_7p_6_intermediates = probe_points == 7, _7p_6_intermediates = probe_points == 7,
_7p_8_intermediates = probe_points == 8, _7p_8_intermediates = probe_points == 8,
_7p_11_intermediates = probe_points == 9, _7p_11_intermediates = probe_points == 9,
_7p_14_intermediates = probe_points == 10, _7p_14_intermediates = probe_points == 10,
_7p_intermed_points = probe_points >= 4, _7p_intermed_points = probe_points >= 4,
_7p_6_centre = probe_points >= 5 && probe_points <= 7, _7p_6_centre = probe_points >= 5 && probe_points <= 7,
_7p_9_centre = probe_points >= 8; _7p_9_centre = probe_points >= 8;
#if DISABLED(PROBE_MANUALLY) #if HAS_BED_PROBE
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
#endif #endif
LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0; LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
if (!_0p_calibration) { if (!_0p_calibration) {
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
z_at_pt[CEN] +=
#if HAS_BED_PROBE
probe_pt(dx, dy, stow_after_each, 1, false)
#else
lcd_probe_pt(0, 0)
#endif
;
}
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center if (_7p_calibration) { // probe extra center points
const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
I_LOOP_CAL_PT(axis, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * 0.1;
z_at_pt[CEN] += z_at_pt[CEN] +=
#if ENABLED(PROBE_MANUALLY) #if HAS_BED_PROBE
lcd_probe_pt(0, 0) probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
#else #else
probe_pt(dx, dy, stow_after_each, 1, false) lcd_probe_pt(cos(a) * r, sin(a) * r)
#endif #endif
; ;
} }
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
if (_7p_calibration) { // probe extra center points }
const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP; if (!_1p_calibration) { // probe the radius
I_LOOP_CAL_PT(axis, start, steps) { const CalEnum start = _4p_opposite_points ? _AB : __A;
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
bool zig_zag = true;
F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
const int8_t offset = _7p_9_centre ? 1 : 0;
for (int8_t circle = -offset; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * 0.1; r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
z_at_pt[CEN] += interpol = fmod(axis, 1);
#if ENABLED(PROBE_MANUALLY) const float z_temp =
lcd_probe_pt(cos(a) * r, sin(a) * r) #if HAS_BED_PROBE
#else
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1) probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
#else
lcd_probe_pt(cos(a) * r, sin(a) * r)
#endif #endif
; ;
// split probe point to neighbouring calibration points
z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
} }
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); zig_zag = !zig_zag;
}
if (!_1p_calibration) { // probe the radius
const CalEnum start = _4p_opposite_points ? _AB : __A;
const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
_7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
_7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
_7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
_7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
_7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
_7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
_7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
_4P_STEP; // .5r * 6 + 1c = 4
bool zig_zag = true;
F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
const int8_t offset = _7p_9_centre ? 1 : 0;
for (int8_t circle = -offset; circle <= offset; circle++) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
interpol = fmod(axis, 1);
const float z_temp =
#if ENABLED(PROBE_MANUALLY)
lcd_probe_pt(cos(a) * r, sin(a) * r)
#else
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
#endif
;
// split probe point to neighbouring calibration points
z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
}
zig_zag = !zig_zag;
}
if (_7p_intermed_points)
LOOP_CAL_RAD(axis)
z_at_pt[axis] /= _7P_STEP / steps;
} }
if (_7p_intermed_points)
LOOP_CAL_RAD(axis)
z_at_pt[axis] /= _7P_STEP / steps;
}
float S1 = z_at_pt[CEN], float S1 = z_at_pt[CEN],
S2 = sq(z_at_pt[CEN]); S2 = sq(z_at_pt[CEN]);
int16_t N = 1; int16_t N = 1;
if (!_1p_calibration) { // std dev from zero plane if (!_1p_calibration) { // std dev from zero plane
LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) { LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
S1 += z_at_pt[axis]; S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]); S2 += sq(z_at_pt[axis]);
N++; N++;
}
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
} }
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
} }
return 0.00001;
} }
#if DISABLED(PROBE_MANUALLY) return 0.00001;
}
static void G33_auto_tune() {
float z_at_pt[NPP + 1] = { 0.0 },
z_at_pt_base[NPP + 1] = { 0.0 },
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z06(I) ZP(6, I)
#define Z03(I) ZP(3, I)
#define Z02(I) ZP(2, I)
#define Z01(I) ZP(1, I)
#define Z32(I) ZP(3/2, I)
SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
SERIAL_EOL();
probe_G33_points(z_at_pt_base, 3, true, false);
print_G33_results(z_at_pt_base, true, true);
LOOP_XYZ(axis) { #if HAS_BED_PROBE
delta_endstop_adj[axis] -= 1.0;
endstops.enable(true); static void G33_auto_tune() {
if (!home_delta()) return; float z_at_pt[NPP + 1] = { 0.0 },
endstops.not_homing(); z_at_pt_base[NPP + 1] = { 0.0 },
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
SERIAL_PROTOCOLPGM("Tuning E"); #define ZP(N,I) ((N) * z_at_pt[I])
SERIAL_CHAR(tolower(axis_codes[axis])); #define Z06(I) ZP(6, I)
SERIAL_EOL(); #define Z03(I) ZP(3, I)
#define Z02(I) ZP(2, I)
#define Z01(I) ZP(1, I)
#define Z32(I) ZP(3/2, I)
probe_G33_points(z_at_pt, 3, true, false); SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; SERIAL_EOL();
print_G33_results(z_at_pt, true, true); probe_G33_points(z_at_pt_base, 3, true, false);
delta_endstop_adj[axis] += 1.0; print_G33_results(z_at_pt_base, true, true);
switch (axis) {
case A_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
break;
case B_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
break;
case C_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
break;
}
}
h_fac /= 3.0;
h_fac *= norm; // Normalize to 1.02 for Kossel mini
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) { LOOP_XYZ(axis) {
delta_radius += 1.0 * zig_zag; delta_endstop_adj[axis] -= 1.0;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
endstops.enable(true); endstops.enable(true);
if (!home_delta()) return; if (!home_delta()) return;
endstops.not_homing(); endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning R"); SERIAL_PROTOCOLPGM("Tuning E");
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+"); SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL(); SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_radius -= 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
}
r_fac /= 2.0;
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
LOOP_XYZ(axis) {
delta_tower_angle_trim[axis] += 1.0;
delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning T");
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false); probe_G33_points(z_at_pt, 3, true, false);
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis]; LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true); print_G33_results(z_at_pt, true, true);
delta_endstop_adj[axis] += 1.0;
delta_tower_angle_trim[axis] -= 1.0; switch (axis) {
delta_endstop_adj[(axis+1) % 3] += 1.0/4.5; case A_AXIS :
delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5; h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
switch (axis) {
case A_AXIS :
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
break; break;
case B_AXIS : case B_AXIS :
a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
break; break;
case C_AXIS : case C_AXIS :
a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
break; break;
}
} }
a_fac /= 3.0; }
a_fac *= norm; // Normalize to 0.83 for Kossel mini h_fac /= 3.0;
h_fac *= norm; // Normalize to 1.02 for Kossel mini
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
delta_radius += 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
endstops.enable(true); endstops.enable(true);
if (!home_delta()) return; if (!home_delta()) return;
endstops.not_homing(); endstops.not_homing();
print_signed_float(PSTR( "H_FACTOR: "), h_fac);
print_signed_float(PSTR(" R_FACTOR: "), r_fac); SERIAL_PROTOCOLPGM("Tuning R");
print_signed_float(PSTR(" A_FACTOR: "), a_fac); SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
SERIAL_EOL(); SERIAL_EOL();
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h"); probe_G33_points(z_at_pt, 3, true, false);
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_radius -= 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
}
r_fac /= 2.0;
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
LOOP_XYZ(axis) {
delta_tower_angle_trim[axis] += 1.0;
delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning T");
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL(); SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_tower_angle_trim[axis] -= 1.0;
delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
switch (axis) {
case A_AXIS :
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
break;
case B_AXIS :
a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
break;
case C_AXIS :
a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
break;
}
} }
a_fac /= 3.0;
a_fac *= norm; // Normalize to 0.83 for Kossel mini
#endif // !PROBE_MANUALLY endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
print_signed_float(PSTR( "H_FACTOR: "), h_fac);
print_signed_float(PSTR(" R_FACTOR: "), r_fac);
print_signed_float(PSTR(" A_FACTOR: "), a_fac);
SERIAL_EOL();
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
SERIAL_EOL();
}
/** #endif // HAS_BED_PROBE
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, endstops, delta radius, and tower angles.
*
* Parameters:
*
* Pn Number of probe points:
* P0 No probe. Normalize only.
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P10 Probe all positions + at different itermediate locations and average them.
*
* T Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and takes the best result
*
* A Auto tune calibartion factors (set in Configuration.h)
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
*
* E Engage the probe for each point
*/
inline void gcode_G33() {
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); /**
if (!WITHIN(probe_points, 0, 10)) { * G33 - Delta '1-4-7-point' Auto-Calibration
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10)."); * Calibrate height, endstops, delta radius, and tower angles.
return; *
} * Parameters:
*
* Pn Number of probe points:
* P0 No probe. Normalize only.
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P10 Probe all positions + at different itermediate locations and average them.
*
* T Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and takes the best result
*
* A Auto tune calibartion factors (set in Configuration.h)
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
*
* E Engage the probe for each point
*/
inline void gcode_G33() {
const int8_t verbose_level = parser.byteval('V', 1); const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
if (!WITHIN(verbose_level, 0, 2)) { if (!WITHIN(probe_points, 0, 10)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2)."); SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
return; return;
} }
const float calibration_precision = parser.floatval('C'); const int8_t verbose_level = parser.byteval('V', 1);
if (calibration_precision < 0) { if (!WITHIN(verbose_level, 0, 2)) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0)."); SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
return; return;
} }
const int8_t force_iterations = parser.intval('F', 0); const float calibration_precision = parser.floatval('C');
if (!WITHIN(force_iterations, 0, 30)) { if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30)."); SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
return; return;
} }
const bool towers_set = !parser.boolval('T'), const int8_t force_iterations = parser.intval('F', 0);
auto_tune = parser.boolval('A'), if (!WITHIN(force_iterations, 0, 30)) {
stow_after_each = parser.boolval('E'), SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
_0p_calibration = probe_points == 0, return;
_1p_calibration = probe_points == 1, }
_4p_calibration = probe_points == 2,
_7p_9_centre = probe_points >= 8, const bool towers_set = !parser.boolval('T'),
_tower_results = (_4p_calibration && towers_set) auto_tune = parser.boolval('A'),
|| probe_points >= 3 || probe_points == 0, stow_after_each = parser.boolval('E'),
_opposite_results = (_4p_calibration && !towers_set) _0p_calibration = probe_points == 0,
|| probe_points >= 3 || probe_points == 0, _1p_calibration = probe_points == 1,
_endstop_results = probe_points != 1, _4p_calibration = probe_points == 2,
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set; _7p_9_centre = probe_points >= 8,
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; _tower_results = (_4p_calibration && towers_set)
int8_t iterations = 0; || probe_points >= 3 || probe_points == 0,
float test_precision, _opposite_results = (_4p_calibration && !towers_set)
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end || probe_points >= 3 || probe_points == 0,
zero_std_dev_min = zero_std_dev, _endstop_results = probe_points != 1,
e_old[ABC] = { _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
delta_endstop_adj[A_AXIS], const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
delta_endstop_adj[B_AXIS], int8_t iterations = 0;
delta_endstop_adj[C_AXIS] float test_precision,
}, zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
dr_old = delta_radius, zero_std_dev_min = zero_std_dev,
zh_old = home_offset[Z_AXIS], e_old[ABC] = {
ta_old[ABC] = { delta_endstop_adj[A_AXIS],
delta_tower_angle_trim[A_AXIS], delta_endstop_adj[B_AXIS],
delta_tower_angle_trim[B_AXIS], delta_endstop_adj[C_AXIS]
delta_tower_angle_trim[C_AXIS] },
}; dr_old = delta_radius,
zh_old = home_offset[Z_AXIS],
ta_old[ABC] = {
delta_tower_angle_trim[A_AXIS],
delta_tower_angle_trim[B_AXIS],
delta_tower_angle_trim[C_AXIS]
};
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
LOOP_CAL_RAD(axis) { LOOP_CAL_RAD(axis) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0)); r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
if (!position_is_reachable(cos(a) * r, sin(a) * r)) { if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible."); SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
return; return;
}
} }
} }
}
stepper.synchronize(); stepper.synchronize();
#if HAS_LEVELING #if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid reset_bed_level(); // After calibration bed-level data is no longer valid
#endif #endif
#if HOTENDS > 1 #if HOTENDS > 1
const uint8_t old_tool_index = active_extruder; const uint8_t old_tool_index = active_extruder;
tool_change(0, 0, true); tool_change(0, 0, true);
#define G33_CLEANUP() G33_cleanup(old_tool_index) #define G33_CLEANUP() G33_cleanup(old_tool_index)
#else
#define G33_CLEANUP() G33_cleanup()
#endif
setup_for_endstop_or_probe_move();
endstops.enable(true);
if (!_0p_calibration) {
if (!home_delta())
return;
endstops.not_homing();
}
if (auto_tune) {
#if HAS_BED_PROBE
G33_auto_tune();
#else #else
#define G33_CLEANUP() G33_cleanup() SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
#endif #endif
G33_CLEANUP();
return;
}
setup_for_endstop_or_probe_move(); // Report settings
endstops.enable(true);
if (!_0p_calibration) {
if (!home_delta())
return;
endstops.not_homing();
}
if (auto_tune) {
#if ENABLED(PROBE_MANUALLY)
SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
#else
G33_auto_tune();
#endif
G33_CLEANUP();
return;
}
// Report settings const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
SERIAL_EOL();
lcd_setstatusPGM(checkingac);
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string print_G33_settings(_endstop_results, _angle_results);
serialprintPGM(checkingac);
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
SERIAL_EOL();
lcd_setstatusPGM(checkingac);
print_G33_settings(_endstop_results, _angle_results); do {
do { float z_at_pt[NPP + 1] = { 0.0 };
float z_at_pt[NPP + 1] = { 0.0 }; test_precision = zero_std_dev;
test_precision = zero_std_dev; iterations++;
iterations++; // Probe the points
// Probe the points zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each); // Solve matrices
// Solve matrices if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
if (zero_std_dev < zero_std_dev_min) {
COPY(e_old, delta_endstop_adj);
dr_old = delta_radius;
zh_old = home_offset[Z_AXIS];
COPY(ta_old, delta_tower_angle_trim);
}
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) { float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
if (zero_std_dev < zero_std_dev_min) { const float r_diff = delta_radius - delta_calibration_radius,
COPY(e_old, delta_endstop_adj); h_factor = 1 / 6.0 *
dr_old = delta_radius; #ifdef H_FACTOR
zh_old = home_offset[Z_AXIS]; (H_FACTOR), // Set in Configuration.h
COPY(ta_old, delta_tower_angle_trim); #else
} (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
#endif
r_factor = 1 / 6.0 *
#ifdef R_FACTOR
-(R_FACTOR), // Set in Configuration.h
#else
-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
#endif
a_factor = 1 / 6.0 *
#ifdef A_FACTOR
(A_FACTOR); // Set in Configuration.h
#else
(66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
#endif
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 }; #define ZP(N,I) ((N) * z_at_pt[I])
const float r_diff = delta_radius - delta_calibration_radius, #define Z6(I) ZP(6, I)
h_factor = 1 / 6.0 * #define Z4(I) ZP(4, I)
#ifdef H_FACTOR #define Z2(I) ZP(2, I)
(H_FACTOR), // Set in Configuration.h #define Z1(I) ZP(1, I)
#else
(1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
#endif
r_factor = 1 / 6.0 *
#ifdef R_FACTOR
-(R_FACTOR), // Set in Configuration.h
#else
-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
#endif
a_factor = 1 / 6.0 *
#ifdef A_FACTOR
(A_FACTOR); // Set in Configuration.h
#else
(66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
#endif
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z6(I) ZP(6, I)
#define Z4(I) ZP(4, I)
#define Z2(I) ZP(2, I)
#define Z1(I) ZP(1, I)
#if ENABLED(PROBE_MANUALLY)
test_precision = 0.00; // forced end
#endif
switch (probe_points) { #if !HAS_BED_PROBE
case 0: test_precision = 0.00; // forced end
test_precision = 0.00; // forced end #endif
break;
case 1: switch (probe_points) {
test_precision = 0.00; // forced end case 0:
LOOP_XYZ(axis) e_delta[axis] = Z1(CEN); test_precision = 0.00; // forced end
break; break;
case 2: case 1:
if (towers_set) { test_precision = 0.00; // forced end
e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor; LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor; break;
e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
}
else {
e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
}
break;
default: case 2:
e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor; if (towers_set) {
e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor; e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor; e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor; e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
if (towers_set) { }
t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor; else {
t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor; e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor; e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5; e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5; r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5; }
} break;
break;
}
LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis]; default:
delta_radius += r_delta; e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis]; e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
} e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
else if (zero_std_dev >= test_precision) { // step one back r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
COPY(delta_endstop_adj, e_old);
delta_radius = dr_old; if (towers_set) {
home_offset[Z_AXIS] = zh_old; t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
COPY(delta_tower_angle_trim, ta_old); t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
}
break;
} }
if (verbose_level != 0) { // !dry run LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
// normalise angles to least squares delta_radius += r_delta;
if (_angle_results) { LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
float a_sum = 0.0; }
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; else if (zero_std_dev >= test_precision) { // step one back
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0; COPY(delta_endstop_adj, e_old);
} delta_radius = dr_old;
home_offset[Z_AXIS] = zh_old;
COPY(delta_tower_angle_trim, ta_old);
}
// adjust delta_height and endstops by the max amount if (verbose_level != 0) { // !dry run
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); // normalise angles to least squares
home_offset[Z_AXIS] -= z_temp; if (_angle_results) {
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; float a_sum = 0.0;
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
} }
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
NOMORE(zero_std_dev_min, zero_std_dev);
// print report // adjust delta_height and endstops by the max amount
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
}
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
NOMORE(zero_std_dev_min, zero_std_dev);
if (verbose_level != 1) // print report
print_G33_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level != 0) { // !dry run if (verbose_level != 1)
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations print_G33_results(z_at_pt, _tower_results, _opposite_results);
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(32); if (verbose_level != 0) { // !dry run
#if DISABLED(PROBE_MANUALLY) if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
if (zero_std_dev >= test_precision && !_1p_calibration) SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOLPGM("rolling back."); SERIAL_PROTOCOL_SP(32);
else #if HAS_BED_PROBE
#endif if (zero_std_dev >= test_precision && !_1p_calibration)
{ SERIAL_PROTOCOLPGM("rolling back.");
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
}
SERIAL_EOL();
char mess[21];
strcpy_P(mess, PSTR("Calibration sd:"));
if (zero_std_dev_min < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
lcd_setstatus(mess);
print_G33_settings(_endstop_results, _angle_results);
serialprintPGM(save_message);
SERIAL_EOL();
}
else { // !end iterations
char mess[15];
if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
else else
strcpy_P(mess, PSTR("No convergence")); #endif
SERIAL_PROTOCOL(mess); {
SERIAL_PROTOCOL_SP(32); SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
SERIAL_PROTOCOL_F(zero_std_dev, 3); }
SERIAL_EOL(); SERIAL_EOL();
lcd_setstatus(mess); char mess[21];
print_G33_settings(_endstop_results, _angle_results); strcpy_P(mess, PSTR("Calibration sd:"));
} if (zero_std_dev_min < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
lcd_setstatus(mess);
print_G33_settings(_endstop_results, _angle_results);
serialprintPGM(save_message);
SERIAL_EOL();
} }
else { // dry run else { // !end iterations
const char *enddryrun = PSTR("End DRY-RUN"); char mess[15];
serialprintPGM(enddryrun); if (iterations < 31)
SERIAL_PROTOCOL_SP(35); sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
else
strcpy_P(mess, PSTR("No convergence"));
SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOL_SP(32);
SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL(); SERIAL_EOL();
char mess[21];
strcpy_P(mess, enddryrun);
strcpy_P(&mess[11], PSTR(" sd:"));
if (zero_std_dev < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
lcd_setstatus(mess); lcd_setstatus(mess);
print_G33_settings(_endstop_results, _angle_results);
} }
}
else { // dry run
const char *enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_PROTOCOL_SP(35);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
endstops.enable(true); char mess[21];
if (!home_delta()) strcpy_P(mess, enddryrun);
return; strcpy_P(&mess[11], PSTR(" sd:"));
endstops.not_homing(); if (zero_std_dev < 1)
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
lcd_setstatus(mess);
} }
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
G33_CLEANUP(); endstops.enable(true);
if (!home_delta())
return;
endstops.not_homing();
} }
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
#endif // DELTA_AUTO_CALIBRATION G33_CLEANUP();
}
#endif // PROBE_SELECTED #endif // DELTA_AUTO_CALIBRATION
#if ENABLED(G38_PROBE_TARGET) #if ENABLED(G38_PROBE_TARGET)

@ -567,10 +567,8 @@ static_assert(1 >= 0
#error "You probably want to use Max Endstops for DELTA!" #error "You probably want to use Max Endstops for DELTA!"
#elif ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_BILINEAR) && !UBL_DELTA #elif ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_BILINEAR) && !UBL_DELTA
#error "ENABLE_LEVELING_FADE_HEIGHT on DELTA requires AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL." #error "ENABLE_LEVELING_FADE_HEIGHT on DELTA requires AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL."
#elif ENABLED(DELTA_AUTO_CALIBRATION) && !PROBE_SELECTED #elif ENABLED(DELTA_AUTO_CALIBRATION) && !(HAS_BED_PROBE || ENABLED(ULTIPANEL))
#error "DELTA_AUTO_CALIBRATION requires a probe: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, Z Servo." #error "DELTA_AUTO_CALIBRATION requires either a probe or an LCD Controller."
#elif ENABLED(DELTA_AUTO_CALIBRATION) && ENABLED(PROBE_MANUALLY) && DISABLED(ULTIPANEL)
#error "DELTA_AUTO_CALIBRATION requires an LCD controller with PROBE_MANUALLY."
#elif ABL_GRID #elif ABL_GRID
#if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0 #if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0
#error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers." #error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers."
@ -612,7 +610,7 @@ static_assert(1 >= 0
, "Please enable only one probe option: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or Z Servo." , "Please enable only one probe option: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or Z Servo."
); );
#if PROBE_SELECTED #if HAS_BED_PROBE
/** /**
* Z_PROBE_SLED is incompatible with DELTA * Z_PROBE_SLED is incompatible with DELTA
@ -660,14 +658,14 @@ static_assert(1 >= 0
#if !HAS_Z_MIN_PROBE_PIN #if !HAS_Z_MIN_PROBE_PIN
#error "Z_MIN_PROBE_ENDSTOP requires the Z_MIN_PROBE_PIN to be defined." #error "Z_MIN_PROBE_ENDSTOP requires the Z_MIN_PROBE_PIN to be defined."
#endif #endif
#elif DISABLED(PROBE_MANUALLY) #else
#error "You must enable either Z_MIN_PROBE_ENDSTOP or Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use a probe." #error "You must enable either Z_MIN_PROBE_ENDSTOP or Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use a probe."
#endif #endif
/** /**
* Make sure Z raise values are set * Make sure Z raise values are set
*/ */
#if !defined(Z_CLEARANCE_DEPLOY_PROBE) #ifndef Z_CLEARANCE_DEPLOY_PROBE
#error "You must define Z_CLEARANCE_DEPLOY_PROBE in your configuration." #error "You must define Z_CLEARANCE_DEPLOY_PROBE in your configuration."
#elif !defined(Z_CLEARANCE_BETWEEN_PROBES) #elif !defined(Z_CLEARANCE_BETWEEN_PROBES)
#error "You must define Z_CLEARANCE_BETWEEN_PROBES in your configuration." #error "You must define Z_CLEARANCE_BETWEEN_PROBES in your configuration."
@ -682,14 +680,14 @@ static_assert(1 >= 0
/** /**
* Require some kind of probe for bed leveling and probe testing * Require some kind of probe for bed leveling and probe testing
*/ */
#if OLDSCHOOL_ABL #if OLDSCHOOL_ABL && !PROBE_SELECTED
#error "Auto Bed Leveling requires one of these: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or a Z Servo." #error "Auto Bed Leveling requires one of these: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or a Z Servo."
#endif #endif
#endif #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
#error "Z_MIN_PROBE_REPEATABILITY_TEST requires a probe: FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or Z Servo."
#endif
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) && !HAS_BED_PROBE
#error "Z_MIN_PROBE_REPEATABILITY_TEST requires a probe: FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or Z Servo."
#endif #endif
/** /**
@ -724,6 +722,9 @@ static_assert(1 >= 0
* Unified Bed Leveling * Unified Bed Leveling
*/ */
// Hide PROBE_MANUALLY from the rest of the code
#undef PROBE_MANUALLY
#if IS_SCARA #if IS_SCARA
#error "AUTO_BED_LEVELING_UBL does not yet support SCARA printers." #error "AUTO_BED_LEVELING_UBL does not yet support SCARA printers."
#elif DISABLED(EEPROM_SETTINGS) #elif DISABLED(EEPROM_SETTINGS)
@ -739,7 +740,7 @@ static_assert(1 >= 0
static_assert(WITHIN(UBL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y), "UBL_PROBE_PT_3_Y can't be reached by the Z probe."); static_assert(WITHIN(UBL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y), "UBL_PROBE_PT_3_Y can't be reached by the Z probe.");
#endif #endif
#elif HAS_ABL #elif OLDSCHOOL_ABL
/** /**
* Auto Bed Leveling * Auto Bed Leveling
@ -788,6 +789,9 @@ static_assert(1 >= 0
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)
// Hide PROBE_MANUALLY from the rest of the code
#undef PROBE_MANUALLY
/** /**
* Mesh Bed Leveling * Mesh Bed Leveling
*/ */
@ -806,8 +810,8 @@ static_assert(1 >= 0
#if ENABLED(LCD_BED_LEVELING) #if ENABLED(LCD_BED_LEVELING)
#if DISABLED(ULTIPANEL) #if DISABLED(ULTIPANEL)
#error "LCD_BED_LEVELING requires an LCD controller." #error "LCD_BED_LEVELING requires an LCD controller."
#elif DISABLED(MESH_BED_LEVELING) && !(HAS_ABL && ENABLED(PROBE_MANUALLY)) #elif !(ENABLED(MESH_BED_LEVELING) || (OLDSCHOOL_ABL && ENABLED(PROBE_MANUALLY)))
#error "LCD_BED_LEVELING requires MESH_BED_LEVELING or PROBE_MANUALLY with auto bed leveling enabled." #error "LCD_BED_LEVELING requires MESH_BED_LEVELING or ABL with PROBE_MANUALLY."
#endif #endif
#endif #endif

@ -2682,26 +2682,9 @@ void kill_screen(const char* lcd_msg) {
float move_menu_scale; float move_menu_scale;
#if ENABLED(DELTA_CALIBRATION_MENU) #if ENABLED(DELTA_CALIBRATION_MENU) || (ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE)
void lcd_move_z(); void lcd_move_z();
void lcd_delta_calibrate_menu();
void _lcd_calibrate_homing() {
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_previous_menu();
}
void _lcd_delta_calibrate_home() {
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_goto_screen(_lcd_calibrate_homing);
}
void _man_probe_pt(const float rx, const float ry) { void _man_probe_pt(const float rx, const float ry) {
#if HAS_LEVELING #if HAS_LEVELING
@ -2719,6 +2702,10 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(lcd_move_z); lcd_goto_screen(lcd_move_z);
} }
#endif // DELTA_CALIBRATION_MENU || (DELTA_AUTO_CALIBRATION && !HAS_BED_PROBE)
#if ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE
float lcd_probe_pt(const float &rx, const float &ry) { float lcd_probe_pt(const float &rx, const float &ry) {
_man_probe_pt(rx, ry); _man_probe_pt(rx, ry);
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
@ -2730,6 +2717,26 @@ void kill_screen(const char* lcd_msg) {
return current_position[Z_AXIS]; return current_position[Z_AXIS];
} }
#endif // DELTA_AUTO_CALIBRATION && !HAS_BED_PROBE
#if ENABLED(DELTA_CALIBRATION_MENU)
void _lcd_calibrate_homing() {
if (lcdDrawUpdate) lcd_implementation_drawmenu_static(LCD_HEIGHT >= 4 ? 1 : 0, PSTR(MSG_LEVEL_BED_HOMING));
lcdDrawUpdate = LCDVIEW_CALL_REDRAW_NEXT;
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS])
lcd_goto_previous_menu();
}
void _lcd_delta_calibrate_home() {
#if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid
#endif
enqueue_and_echo_commands_P(PSTR("G28"));
lcd_goto_screen(_lcd_calibrate_homing);
}
void _goto_tower_x() { _man_probe_pt(cos(RADIANS(210)) * delta_calibration_radius, sin(RADIANS(210)) * delta_calibration_radius); } void _goto_tower_x() { _man_probe_pt(cos(RADIANS(210)) * delta_calibration_radius, sin(RADIANS(210)) * delta_calibration_radius); }
void _goto_tower_y() { _man_probe_pt(cos(RADIANS(330)) * delta_calibration_radius, sin(RADIANS(330)) * delta_calibration_radius); } void _goto_tower_y() { _man_probe_pt(cos(RADIANS(330)) * delta_calibration_radius, sin(RADIANS(330)) * delta_calibration_radius); }
void _goto_tower_z() { _man_probe_pt(cos(RADIANS( 90)) * delta_calibration_radius, sin(RADIANS( 90)) * delta_calibration_radius); } void _goto_tower_z() { _man_probe_pt(cos(RADIANS( 90)) * delta_calibration_radius, sin(RADIANS( 90)) * delta_calibration_radius); }

@ -201,7 +201,7 @@ void lcd_reset_status();
float lcd_z_offset_edit(); float lcd_z_offset_edit();
#endif #endif
#if ENABLED(DELTA_CALIBRATION_MENU) #if ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE
float lcd_probe_pt(const float &rx, const float &ry); float lcd_probe_pt(const float &rx, const float &ry);
#endif #endif

Loading…
Cancel
Save