Merge pull request #5175 from thinkyhead/rc_dualx_homing

Unpark when using Z_SAFE_HOMING with Dual X
master
Scott Lahteine 8 years ago committed by GitHub
commit 1f3e2440bc

@ -294,8 +294,8 @@ void update_software_endstops(AxisEnum axis);
extern float soft_endstop_min[XYZ]; extern float soft_endstop_min[XYZ];
extern float soft_endstop_max[XYZ]; extern float soft_endstop_max[XYZ];
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) #define LOGICAL_POSITION(POS, AXIS) ((POS) + home_offset[AXIS] + position_shift[AXIS])
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define RAW_POSITION(POS, AXIS) ((POS) - home_offset[AXIS] - position_shift[AXIS])
#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS) #define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS) #define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS) #define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)

@ -1312,22 +1312,20 @@ bool get_target_extruder_from_command(int code) {
static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) { static float x_home_pos(const int extruder) {
if (extruder == 0) if (extruder == 0)
return LOGICAL_X_POSITION(base_home_pos(X_AXIS)); return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
else else
/** /**
* In dual carriage mode the extruder offset provides an override of the * In dual carriage mode the extruder offset provides an override of the
* second X-carriage offset when homed - otherwise X2_HOME_POS is used. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
* This allow soft recalibration of the second extruder offset position * This allows soft recalibration of the second extruder home position
* without firmware reflash (through the M218 command). * without firmware reflash (through the M218 command).
*/ */
return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS; return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
} }
static int x_home_dir(int extruder) { static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2 static bool active_extruder_parked = false; // used in mode 1 & 2
@ -1351,25 +1349,33 @@ void update_software_endstops(AxisEnum axis) {
float offs = LOGICAL_POSITION(0, axis); float offs = LOGICAL_POSITION(0, axis);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
bool did_update = false;
if (axis == X_AXIS) { if (axis == X_AXIS) {
// In Dual X mode hotend_offset[X] is T1's home position
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) { if (active_extruder != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs; soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
soft_endstop_max[X_AXIS] = dual_max_x + offs; soft_endstop_max[X_AXIS] = dual_max_x + offs;
return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
// In Duplication Mode, T0 can move as far left as X_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs; soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs; soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
return;
}
} }
else else {
#endif // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
{
soft_endstop_min[axis] = base_min_pos(axis) + offs; soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs; soft_endstop_max[axis] = base_max_pos(axis) + offs;
} }
}
#else
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
@ -1418,6 +1424,7 @@ static void set_home_offset(AxisEnum axis, float v) {
* current_position to home, because neither X nor Y is at home until * current_position to home, because neither X nor Y is at home until
* both are at home. Z can however be homed individually. * both are at home. Z can however be homed individually.
* *
* Callers must sync the planner position after calling this!
*/ */
static void set_axis_is_at_home(AxisEnum axis) { static void set_axis_is_at_home(AxisEnum axis) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -1434,12 +1441,8 @@ static void set_axis_is_at_home(AxisEnum axis) {
update_software_endstops(axis); update_software_endstops(axis);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
if (active_extruder != 0)
current_position[X_AXIS] = x_home_pos(active_extruder); current_position[X_AXIS] = x_home_pos(active_extruder);
else
current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
update_software_endstops(X_AXIS);
return; return;
} }
#endif #endif
@ -3252,13 +3255,21 @@ inline void gcode_G4() {
#endif #endif
) )
) { ) {
#if HOMING_Z_WITH_PROBE #if HOMING_Z_WITH_PROBE
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER; destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER; destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
#endif #endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination); if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
#endif #endif
// This causes the carriage on Dual X to unpark
#if ENABLED(DUAL_X_CARRIAGE)
active_extruder_parked = false;
#endif
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]); do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
HOMEAXIS(Z); HOMEAXIS(Z);
} }
@ -3407,20 +3418,31 @@ inline void gcode_G28() {
// Home X // Home X
if (home_all_axis || homeX) { if (home_all_axis || homeX) {
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
int tmp_extruder = active_extruder;
active_extruder = !active_extruder; // Always home the 2nd (right) extruder first
active_extruder = 1;
HOMEAXIS(X); HOMEAXIS(X);
// Remember this extruder's position for later tool change
inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]); inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
active_extruder = tmp_extruder;
// Home the 1st (left) extruder
active_extruder = 0;
HOMEAXIS(X); HOMEAXIS(X);
// reset state used by the different modes
// Consider the active extruder to be parked
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0; delayed_move_time = 0;
active_extruder_parked = true; active_extruder_parked = true;
#else #else
HOMEAXIS(X); HOMEAXIS(X);
#endif #endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
#endif #endif
@ -7446,10 +7468,8 @@ inline void invalid_extruder_error(const uint8_t &e) {
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) { void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1 #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) { if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
invalid_extruder_error(tmp_extruder); return invalid_extruder_error(tmp_extruder);
return;
}
// T0-Tnnn: Switch virtual tool by changing the mix // T0-Tnnn: Switch virtual tool by changing the mix
for (uint8_t j = 0; j < MIXING_STEPPERS; j++) for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
@ -7459,10 +7479,8 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
#if HOTENDS > 1 #if HOTENDS > 1
if (tmp_extruder >= EXTRUDERS) { if (tmp_extruder >= EXTRUDERS)
invalid_extruder_error(tmp_extruder); return invalid_extruder_error(tmp_extruder);
return;
}
float old_feedrate_mm_s = feedrate_mm_s; float old_feedrate_mm_s = feedrate_mm_s;
@ -7490,22 +7508,28 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
} }
#endif #endif
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() && const float xhome = x_home_pos(active_extruder);
(delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder)) if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
&& IsRunning()
&& (delayed_move_time || current_position[X_AXIS] != xhome)
) { ) {
float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
#if ENABLED(max_software_endstops)
NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL; SERIAL_ECHOLNPAIR("Raise to ", raised_z);
SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL; SERIAL_ECHOLNPAIR("MoveX to ", xhome);
SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL; SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
} }
#endif #endif
// Park old head: 1) raise 2) move to park position 3) lower // Park old head: 1) raise 2) move to park position 3) lower
for (uint8_t i = 0; i < 3; i++) for (uint8_t i = 0; i < 3; i++)
planner.buffer_line( planner.buffer_line(
i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder), i == 0 ? current_position[X_AXIS] : xhome,
current_position[Y_AXIS], current_position[Y_AXIS],
current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT), i == 2 ? current_position[Z_AXIS] : raised_z,
current_position[E_AXIS], current_position[E_AXIS],
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS], planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
active_extruder active_extruder
@ -7513,9 +7537,11 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
stepper.synchronize(); stepper.synchronize();
} }
// apply Y & Z extruder offset (x offset is already used in determining home pos) // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder]; current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder]; current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
// Activate the new extruder
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below. // This function resets the max/min values - the current position may be overwritten below.
@ -7525,9 +7551,14 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
#endif #endif
// Only when auto-parking are carriages safe to move
if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
switch (dual_x_carriage_mode) { switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE: case DXC_FULL_CONTROL_MODE:
// New current position is the position of the activated extruder
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos); current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
// Save the inactive extruder's position (from the old current_position)
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]); inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
break; break;
case DXC_AUTO_PARK_MODE: case DXC_AUTO_PARK_MODE:
@ -7541,7 +7572,10 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
delayed_move_time = 0; delayed_move_time = 0;
break; break;
case DXC_DUPLICATION_MODE: case DXC_DUPLICATION_MODE:
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position // If the new extruder is the left one, set it "parked"
// This triggers the second extruder to move into the duplication position
active_extruder_parked = (active_extruder == 0);
if (active_extruder_parked) if (active_extruder_parked)
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos); current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
else else
@ -7566,9 +7600,7 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder], float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0); z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
set_destination_to_current(); // Always raise by some amount (destination copied from current_position earlier)
// Always raise by some amount
destination[Z_AXIS] += z_raise; destination[Z_AXIS] += z_raise;
planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder); planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
stepper.synchronize(); stepper.synchronize();
@ -9223,23 +9255,6 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
switch (dual_x_carriage_mode) { switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE: case DXC_FULL_CONTROL_MODE:
break; break;
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
// move duplicate extruder into correct duplication position.
planner.set_position_mm(
LOGICAL_X_POSITION(inactive_extruder_x_pos),
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
);
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
break;
case DXC_AUTO_PARK_MODE: case DXC_AUTO_PARK_MODE:
if (current_position[E_AXIS] == destination[E_AXIS]) { if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion) // This is a travel move (with no extrusion)
@ -9252,12 +9267,38 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
return false; return false;
} }
} }
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder); for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder); planner.buffer_line(
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder); i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
current_position[E_AXIS],
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
active_extruder
);
delayed_move_time = 0;
active_extruder_parked = false;
break;
case DXC_DUPLICATION_MODE:
if (active_extruder == 0) {
// move duplicate extruder into correct duplication position.
planner.set_position_mm(
LOGICAL_X_POSITION(inactive_extruder_x_pos),
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
);
planner.buffer_line(
current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
planner.max_feedrate_mm_s[X_AXIS], 1
);
SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false; active_extruder_parked = false;
}
break; break;
} }
} }
@ -9950,7 +9991,7 @@ void kill(const char* lcd_msg) {
disable_all_steppers(); disable_all_steppers();
#if HAS_POWER_SWITCH #if HAS_POWER_SWITCH
pinMode(PS_ON_PIN, INPUT); SET_INPUT(PS_ON_PIN);
#endif #endif
suicide(); suicide();

Loading…
Cancel
Save