parent
cf94688925
commit
238b8fd2a3
@ -0,0 +1,1001 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Marlin Firmware -- G26 - Mesh Validation Tool
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
|
||||||
|
#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
|
||||||
|
#define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
|
||||||
|
#define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
|
||||||
|
#define LAYER_HEIGHT 0.2
|
||||||
|
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
|
||||||
|
#define BED_TEMP 60.0
|
||||||
|
#define HOTEND_TEMP 205.0
|
||||||
|
#define OOOOZE_AMOUNT 0.3
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#include "Configuration.h"
|
||||||
|
#include "planner.h"
|
||||||
|
#include "stepper.h"
|
||||||
|
#include "temperature.h"
|
||||||
|
#include "UBL.h"
|
||||||
|
#include "ultralcd.h"
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
|
||||||
|
#define SIZE_OF_INTERSECTION_CIRCLES 5
|
||||||
|
#define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
|
||||||
|
// less than SIZE_OR_INTERSECTION_CIRCLES
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Roxy's G26 Mesh Validation Tool
|
||||||
|
*
|
||||||
|
* G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
|
||||||
|
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
|
||||||
|
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
|
||||||
|
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
|
||||||
|
* the intersections of those lines (respectively).
|
||||||
|
*
|
||||||
|
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
|
||||||
|
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
|
||||||
|
* the user can specify the X and Y position of interest with command parameters. This allows the user to
|
||||||
|
* focus on a particular area of the Mesh where attention is needed.
|
||||||
|
*
|
||||||
|
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
|
||||||
|
*
|
||||||
|
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
|
||||||
|
* as the base for any distance comparison.
|
||||||
|
*
|
||||||
|
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
|
||||||
|
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
|
||||||
|
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
|
||||||
|
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
|
||||||
|
* it is on.
|
||||||
|
*
|
||||||
|
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
|
||||||
|
*
|
||||||
|
* F # Filament Used to specify the diameter of the filament being used. If not specified
|
||||||
|
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
|
||||||
|
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
|
||||||
|
* of filament that is being extruded during the printing of the various lines on the bed.
|
||||||
|
*
|
||||||
|
* K Keep-On Keep the heaters turned on at the end of the command.
|
||||||
|
*
|
||||||
|
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
|
||||||
|
*
|
||||||
|
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
|
||||||
|
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
|
||||||
|
*
|
||||||
|
* N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
|
||||||
|
*
|
||||||
|
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
|
||||||
|
* is over kill, but using this parameter will let you get the very first 'cicle' perfect
|
||||||
|
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
|
||||||
|
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
|
||||||
|
*
|
||||||
|
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
|
||||||
|
* given, no prime action will take place. If the parameter specifies an amount, that much
|
||||||
|
* will be purged before continuing. If no amount is specified the command will start
|
||||||
|
* purging filament until the user provides an LCD Click and then it will continue with
|
||||||
|
* printing the Mesh. You can carefully remove the spent filament with a needle nose
|
||||||
|
* pliers while holding the LCD Click wheel in a depressed state.
|
||||||
|
*
|
||||||
|
* R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
|
||||||
|
* undrawn cicle is still done. But the distance to the location for each circle has a
|
||||||
|
* random number of the size specified added to it. Specifying R50 will give an interesting
|
||||||
|
* deviation from the normal behaviour on a 10 x 10 Mesh.
|
||||||
|
*
|
||||||
|
* X # X coordinate Specify the starting location of the drawing activity.
|
||||||
|
*
|
||||||
|
* Y # Y coordinate Specify the starting location of the drawing activity.
|
||||||
|
*/
|
||||||
|
|
||||||
|
extern int UBL_has_control_of_LCD_Panel;
|
||||||
|
extern float feedrate;
|
||||||
|
//extern bool relative_mode;
|
||||||
|
extern Planner planner;
|
||||||
|
//#if ENABLED(ULTRA_LCD)
|
||||||
|
extern char lcd_status_message[];
|
||||||
|
//#endif
|
||||||
|
extern float destination[];
|
||||||
|
extern void set_destination_to_current();
|
||||||
|
extern void set_current_to_destination();
|
||||||
|
extern float code_value_float();
|
||||||
|
extern bool code_value_bool();
|
||||||
|
extern bool code_has_value();
|
||||||
|
extern void lcd_init();
|
||||||
|
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
|
||||||
|
bool prepare_move_to_destination_cartesian();
|
||||||
|
void line_to_destination();
|
||||||
|
void line_to_destination(float );
|
||||||
|
void gcode_G28();
|
||||||
|
void sync_plan_position_e();
|
||||||
|
void un_retract_filament();
|
||||||
|
void retract_filament();
|
||||||
|
void look_for_lines_to_connect();
|
||||||
|
bool parse_G26_parameters();
|
||||||
|
void move_to(const float&, const float&, const float&, const float&) ;
|
||||||
|
void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
|
||||||
|
bool turn_on_heaters();
|
||||||
|
bool prime_nozzle();
|
||||||
|
void chirp_at_user();
|
||||||
|
|
||||||
|
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0;
|
||||||
|
float G26_E_AXIS_feedrate = 0.020,
|
||||||
|
Random_Deviation = 0.0,
|
||||||
|
Layer_Height = LAYER_HEIGHT;
|
||||||
|
|
||||||
|
bool retracted = false; // We keep track of the state of the nozzle to know if it
|
||||||
|
// is currently retracted or not. This allows us to be
|
||||||
|
// less careful because mis-matched retractions and un-retractions
|
||||||
|
// won't leave us in a bad state.
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
void lcd_setstatus(const char* message, bool persist);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
float valid_trig_angle(float);
|
||||||
|
mesh_index_pair find_closest_circle_to_print(float, float);
|
||||||
|
void debug_current_and_destination(char *title);
|
||||||
|
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||||
|
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
|
||||||
|
|
||||||
|
static float E_Pos_Delta,
|
||||||
|
Extrusion_Multiplier = EXTRUSION_MULTIPLIER,
|
||||||
|
Retraction_Multiplier = RETRACTION_MULTIPLIER,
|
||||||
|
Nozzle = NOZZLE,
|
||||||
|
Filament = FILAMENT,
|
||||||
|
Prime_Length = PRIME_LENGTH,
|
||||||
|
X_Pos, Y_Pos,
|
||||||
|
bed_temp = BED_TEMP,
|
||||||
|
hotend_temp = HOTEND_TEMP,
|
||||||
|
Ooooze_Amount = OOOOZE_AMOUNT;
|
||||||
|
|
||||||
|
int8_t Prime_Flag = 0;
|
||||||
|
|
||||||
|
bool Keep_Heaters_On = false,
|
||||||
|
G26_Debug_flag = false;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* These support functions allow the use of large bit arrays of flags that take very
|
||||||
|
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
|
||||||
|
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
|
||||||
|
* in the future.
|
||||||
|
*/
|
||||||
|
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
|
||||||
|
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
|
||||||
|
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
|
||||||
|
|
||||||
|
/**
|
||||||
|
* G26: Mesh Validation Pattern generation.
|
||||||
|
*
|
||||||
|
* Used to interactively edit UBL's Mesh by placing the
|
||||||
|
* nozzle in a problem area and doing a G29 P4 R command.
|
||||||
|
*/
|
||||||
|
void gcode_G26() {
|
||||||
|
float circle_x, circle_y, x, y, xe, ye, tmp,
|
||||||
|
start_angle, end_angle;
|
||||||
|
int i, xi, yi, lcd_init_counter = 0;
|
||||||
|
mesh_index_pair location;
|
||||||
|
|
||||||
|
if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
|
||||||
|
gcode_G28();
|
||||||
|
|
||||||
|
if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
|
||||||
|
|
||||||
|
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
||||||
|
stepper.synchronize();
|
||||||
|
set_current_to_destination();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
|
||||||
|
goto LEAVE; // has gone wrong.
|
||||||
|
|
||||||
|
axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
|
||||||
|
//relative_mode = false; // planner and stepper motors!
|
||||||
|
current_position[E_AXIS] = 0.0;
|
||||||
|
sync_plan_position_e();
|
||||||
|
|
||||||
|
if (Prime_Flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
|
||||||
|
goto LEAVE;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Bed is preheated
|
||||||
|
*
|
||||||
|
* Nozzle is at temperature
|
||||||
|
*
|
||||||
|
* Filament is primed!
|
||||||
|
*
|
||||||
|
* It's "Show Time" !!!
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Clear all of the flags we need
|
||||||
|
ZERO(circle_flags);
|
||||||
|
ZERO(horizontal_mesh_line_flags);
|
||||||
|
ZERO(vertical_mesh_line_flags);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Move nozzle to the specified height for the first layer
|
||||||
|
//
|
||||||
|
set_destination_to_current();
|
||||||
|
destination[Z_AXIS] = Layer_Height;
|
||||||
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
|
||||||
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount);
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel!
|
||||||
|
debug_current_and_destination((char *)"Starting G26 Mesh Validation Pattern.");
|
||||||
|
|
||||||
|
do {
|
||||||
|
if (G29_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
|
||||||
|
strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
|
||||||
|
while (G29_lcd_clicked()) idle(); // Debounce the switch click
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus("Mesh Validation Stopped.", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Continue_with_closest)
|
||||||
|
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||||
|
else
|
||||||
|
location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now.
|
||||||
|
|
||||||
|
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||||
|
circle_x = blm.map_x_index_to_bed_location(location.x_index);
|
||||||
|
circle_y = blm.map_y_index_to_bed_location(location.y_index);
|
||||||
|
|
||||||
|
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
|
||||||
|
#ifdef DELTA
|
||||||
|
if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
|
||||||
|
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
||||||
|
yi = location.y_index;
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOPGM(" Doing circle at: (xi=");
|
||||||
|
SERIAL_ECHO(xi);
|
||||||
|
SERIAL_ECHOPGM(", yi=");
|
||||||
|
SERIAL_ECHO(yi);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
}
|
||||||
|
|
||||||
|
start_angle = 0.0; // assume it is going to be a full circle
|
||||||
|
end_angle = 360.0;
|
||||||
|
if (xi == 0) { // Check for bottom edge
|
||||||
|
start_angle = -90.0;
|
||||||
|
end_angle = 90.0;
|
||||||
|
if (yi == 0) // it is an edge, check for the two left corners
|
||||||
|
start_angle = 0.0;
|
||||||
|
else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
|
||||||
|
end_angle = 0.0;
|
||||||
|
}
|
||||||
|
else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
|
||||||
|
start_angle = 90.0;
|
||||||
|
end_angle = 270.0;
|
||||||
|
if (yi == 0) // it is an edge, check for the two right corners
|
||||||
|
end_angle = 180.0;
|
||||||
|
else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
|
||||||
|
start_angle = 180.0;
|
||||||
|
}
|
||||||
|
else if (yi == 0) {
|
||||||
|
start_angle = 0.0; // only do the top side of the cirlce
|
||||||
|
end_angle = 180.0;
|
||||||
|
}
|
||||||
|
else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
|
||||||
|
start_angle = 180.0; // only do the bottom side of the cirlce
|
||||||
|
end_angle = 360.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
|
||||||
|
* the CPU load and make the arc drawing faster and more smooth
|
||||||
|
*/
|
||||||
|
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
|
||||||
|
int tmp_div_30;
|
||||||
|
for (i = 0; i <= 360 / 30; i++) {
|
||||||
|
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
|
||||||
|
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
|
||||||
|
tmp_div_30 = tmp / 30.0;
|
||||||
|
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
|
||||||
|
|
||||||
|
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
|
||||||
|
y = circle_y + sin_table[tmp_div_30];
|
||||||
|
|
||||||
|
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
|
||||||
|
xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
|
||||||
|
ye = circle_y + sin_table[tmp_div_30 + 1];
|
||||||
|
#ifdef DELTA
|
||||||
|
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
|
||||||
|
continue; // the 'circle' is on the bed. If
|
||||||
|
#else // not, we need to skip
|
||||||
|
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||||
|
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||||
|
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||||
|
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
char ccc, *cptr, seg_msg[50], seg_num[10];
|
||||||
|
strcpy(seg_msg, " segment: ");
|
||||||
|
strcpy(seg_num, " \n");
|
||||||
|
cptr = (char *) "01234567890ABCDEF????????";
|
||||||
|
ccc = cptr[tmp_div_30];
|
||||||
|
seg_num[1] = ccc;
|
||||||
|
strcat(seg_msg, seg_num);
|
||||||
|
debug_current_and_destination(seg_msg);
|
||||||
|
}
|
||||||
|
|
||||||
|
print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height);
|
||||||
|
}
|
||||||
|
lcd_init_counter++;
|
||||||
|
if (lcd_init_counter > 10) {
|
||||||
|
lcd_init_counter = 0;
|
||||||
|
lcd_init(); // Some people's LCD Displays are locking up. This might help them
|
||||||
|
}
|
||||||
|
|
||||||
|
debug_current_and_destination((char *)"Looking for lines to connect.");
|
||||||
|
look_for_lines_to_connect();
|
||||||
|
debug_current_and_destination((char *)"Done with line connect.");
|
||||||
|
}
|
||||||
|
|
||||||
|
debug_current_and_destination((char *)"Done with current circle.");
|
||||||
|
|
||||||
|
}
|
||||||
|
while (location.x_index >= 0 && location.y_index >= 0) ;
|
||||||
|
|
||||||
|
LEAVE:
|
||||||
|
|
||||||
|
retract_filament();
|
||||||
|
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
|
||||||
|
|
||||||
|
debug_current_and_destination((char *)"ready to do Z-Raise.");
|
||||||
|
move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
|
||||||
|
debug_current_and_destination((char *)"done doing Z-Raise.");
|
||||||
|
|
||||||
|
destination[X_AXIS] = X_Pos; // Move back to the starting position
|
||||||
|
destination[Y_AXIS] = Y_Pos;
|
||||||
|
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
|
||||||
|
|
||||||
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
|
||||||
|
debug_current_and_destination((char *)"done doing X/Y move.");
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 0; // Give back control of the LCD Panel!
|
||||||
|
|
||||||
|
if (!Keep_Heaters_On) {
|
||||||
|
#if HAS_TEMP_BED
|
||||||
|
thermalManager.setTargetBed(0.0);
|
||||||
|
#endif
|
||||||
|
thermalManager.setTargetHotend(0.0, 0);
|
||||||
|
}
|
||||||
|
lcd_init(); // Some people's LCD Displays are locking up. This might help them
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
float valid_trig_angle(float d) {
|
||||||
|
while (d > 360.0) d -= 360.0;
|
||||||
|
while (d < 0.0) d += 360.0;
|
||||||
|
return d;
|
||||||
|
}
|
||||||
|
|
||||||
|
mesh_index_pair find_closest_circle_to_print( float X, float Y) {
|
||||||
|
float f, mx, my, dx, dy, closest = 99999.99;
|
||||||
|
mesh_index_pair return_val;
|
||||||
|
|
||||||
|
return_val.x_index = return_val.y_index = -1;
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
if (!is_bit_set(circle_flags, i, j)) {
|
||||||
|
mx = blm.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
|
||||||
|
my = blm.map_y_index_to_bed_location(j);
|
||||||
|
|
||||||
|
dx = X - mx; // Get the distance to this intersection
|
||||||
|
dy = Y - my;
|
||||||
|
f = HYPOT(dx, dy);
|
||||||
|
|
||||||
|
dx = X_Pos - mx; // It is possible that we are being called with the values
|
||||||
|
dy = Y_Pos - my; // to let us find the closest circle to the start position.
|
||||||
|
f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
|
||||||
|
// we are going to add in a small
|
||||||
|
// weighting to the distance calculation to help it choose
|
||||||
|
// a better place to continue.
|
||||||
|
|
||||||
|
if (Random_Deviation > 1.0)
|
||||||
|
f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search
|
||||||
|
|
||||||
|
if (f < closest) {
|
||||||
|
closest = f; // We found a closer location that is still
|
||||||
|
return_val.x_index = i; // un-printed --- save the data for it
|
||||||
|
return_val.y_index = j;
|
||||||
|
return_val.distance= closest;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
|
||||||
|
return return_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
void look_for_lines_to_connect() {
|
||||||
|
float sx, sy, ex, ey;
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
|
||||||
|
if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
|
||||||
|
// This is already a half circle because we are at the edge of the bed.
|
||||||
|
|
||||||
|
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
|
||||||
|
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
|
||||||
|
|
||||||
|
//
|
||||||
|
// We found two circles that need a horizontal line to connect them
|
||||||
|
// Print it!
|
||||||
|
//
|
||||||
|
sx = blm.map_x_index_to_bed_location(i);
|
||||||
|
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
|
||||||
|
sy = blm.map_y_index_to_bed_location(j);
|
||||||
|
|
||||||
|
ex = blm.map_x_index_to_bed_location(i + 1);
|
||||||
|
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
|
||||||
|
ey = sy;
|
||||||
|
|
||||||
|
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||||
|
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||||
|
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||||
|
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
|
||||||
|
SERIAL_ECHO(sx);
|
||||||
|
SERIAL_ECHOPGM(", sy=");
|
||||||
|
SERIAL_ECHO(sy);
|
||||||
|
SERIAL_ECHOPGM(") -> (ex=");
|
||||||
|
SERIAL_ECHO(ex);
|
||||||
|
SERIAL_ECHOPGM(", ey=");
|
||||||
|
SERIAL_ECHO(ey);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
debug_current_and_destination((char *)"Connecting horizontal line.");
|
||||||
|
}
|
||||||
|
|
||||||
|
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
|
||||||
|
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
|
||||||
|
// This is already a half circle because we are at the edge of the bed.
|
||||||
|
|
||||||
|
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
|
||||||
|
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
|
||||||
|
//
|
||||||
|
// We found two circles that need a vertical line to connect them
|
||||||
|
// Print it!
|
||||||
|
//
|
||||||
|
sx = blm.map_x_index_to_bed_location(i);
|
||||||
|
sy = blm.map_y_index_to_bed_location(j);
|
||||||
|
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
|
||||||
|
|
||||||
|
ex = sx;
|
||||||
|
ey = blm.map_y_index_to_bed_location(j + 1);
|
||||||
|
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
|
||||||
|
|
||||||
|
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||||
|
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||||
|
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||||
|
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
|
||||||
|
SERIAL_ECHO(sx);
|
||||||
|
SERIAL_ECHOPGM(", sy=");
|
||||||
|
SERIAL_ECHO(sy);
|
||||||
|
SERIAL_ECHOPGM(") -> (ex=");
|
||||||
|
SERIAL_ECHO(ex);
|
||||||
|
SERIAL_ECHOPGM(", ey=");
|
||||||
|
SERIAL_ECHO(ey);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
debug_current_and_destination((char *)"Connecting vertical line.");
|
||||||
|
}
|
||||||
|
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
|
||||||
|
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void debug_current_and_destination(char *title) {
|
||||||
|
float dx, dy, de, xy_dist, fpmm;
|
||||||
|
|
||||||
|
// if the title message starts with a '!' it is so important, we are going to
|
||||||
|
// ignore the status of the G26_Debug_Flag
|
||||||
|
if (*title != '!' && !G26_Debug_flag) return;
|
||||||
|
|
||||||
|
dx = current_position[X_AXIS] - destination[X_AXIS];
|
||||||
|
dy = current_position[Y_AXIS] - destination[Y_AXIS];
|
||||||
|
de = destination[E_AXIS] - current_position[E_AXIS];
|
||||||
|
if (de == 0.0) return;
|
||||||
|
|
||||||
|
xy_dist = HYPOT(dx, dy);
|
||||||
|
if (xy_dist == 0.0) {
|
||||||
|
return;
|
||||||
|
//SERIAL_ECHOPGM(" FPMM=");
|
||||||
|
//fpmm = de;
|
||||||
|
//SERIAL_PROTOCOL_F(fpmm, 6);
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_ECHOPGM(" fpmm=");
|
||||||
|
fpmm = de / xy_dist;
|
||||||
|
SERIAL_PROTOCOL_F(fpmm, 6);
|
||||||
|
}
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM(" current=( ");
|
||||||
|
SERIAL_PROTOCOL_F(current_position[X_AXIS], 6);
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6);
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
SERIAL_PROTOCOL_F(current_position[E_AXIS], 6);
|
||||||
|
SERIAL_ECHOPGM(" ) destination=( ");
|
||||||
|
if (current_position[X_AXIS] == destination[X_AXIS])
|
||||||
|
SERIAL_ECHOPGM("-------------");
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOL_F(destination[X_AXIS], 6);
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
|
||||||
|
if (current_position[Y_AXIS] == destination[Y_AXIS])
|
||||||
|
SERIAL_ECHOPGM("-------------");
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOL_F(destination[Y_AXIS], 6);
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
|
||||||
|
if (current_position[Z_AXIS] == destination[Z_AXIS])
|
||||||
|
SERIAL_ECHOPGM("-------------");
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOL_F(destination[Z_AXIS], 6);
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
|
||||||
|
if (current_position[E_AXIS] == destination[E_AXIS])
|
||||||
|
SERIAL_ECHOPGM("-------------");
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOL_F(destination[E_AXIS], 6);
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM(" ) ");
|
||||||
|
SERIAL_ECHO(title);
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
|
||||||
|
|
||||||
|
//if (been_to_2_6) {
|
||||||
|
//while ((digitalRead(66) & 0x01) != 0)
|
||||||
|
// idle();
|
||||||
|
//}
|
||||||
|
}
|
||||||
|
|
||||||
|
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
|
||||||
|
float feed_value;
|
||||||
|
static float last_z = -999.99;
|
||||||
|
|
||||||
|
bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOPAIR("in move_to() has_XY_component:", (int)has_XY_component);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (z != last_z) {
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
last_z = z;
|
||||||
|
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
|
||||||
|
|
||||||
|
destination[X_AXIS] = current_position[X_AXIS];
|
||||||
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||||
|
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
|
||||||
|
destination[E_AXIS] = current_position[E_AXIS];
|
||||||
|
|
||||||
|
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||||
|
|
||||||
|
stepper.synchronize();
|
||||||
|
set_destination_to_current();
|
||||||
|
|
||||||
|
if (G26_Debug_flag)
|
||||||
|
debug_current_and_destination((char *)" in move_to() done with Z move");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check if X or Y is involved in the movement.
|
||||||
|
// Yes: a 'normal' movement. No: a retract() or un_retract()
|
||||||
|
feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
||||||
|
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
destination[X_AXIS] = x;
|
||||||
|
destination[Y_AXIS] = y;
|
||||||
|
destination[E_AXIS] += e_delta;
|
||||||
|
|
||||||
|
if (G26_Debug_flag)
|
||||||
|
debug_current_and_destination((char *)" in move_to() doing last move");
|
||||||
|
|
||||||
|
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||||
|
|
||||||
|
if (G26_Debug_flag)
|
||||||
|
debug_current_and_destination((char *)" in move_to() after last move");
|
||||||
|
|
||||||
|
stepper.synchronize();
|
||||||
|
set_destination_to_current();
|
||||||
|
}
|
||||||
|
|
||||||
|
void retract_filament() {
|
||||||
|
if (!retracted) { // Only retract if we are not already retracted!
|
||||||
|
retracted = true;
|
||||||
|
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||||
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier);
|
||||||
|
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void un_retract_filament() {
|
||||||
|
if (retracted) { // Only un-retract if we are retracted.
|
||||||
|
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier);
|
||||||
|
retracted = false;
|
||||||
|
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
|
||||||
|
* to the other. But there are really three sets of coordinates involved. The first coordinate
|
||||||
|
* is the present location of the nozzle. We don't necessarily want to print from this location.
|
||||||
|
* We first need to move the nozzle to the start of line segment where we want to print. Once
|
||||||
|
* there, we can use the two coordinates supplied to draw the line.
|
||||||
|
*
|
||||||
|
* Note: Although we assume the first set of coordinates is the start of the line and the second
|
||||||
|
* set of coordinates is the end of the line, it does not always work out that way. This function
|
||||||
|
* optimizes the movement to minimize the travel distance before it can start printing. This saves
|
||||||
|
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
|
||||||
|
* cause a lot of very little short retracement of th nozzle when it draws the very first line
|
||||||
|
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
|
||||||
|
* cases where the optimization comes into play.
|
||||||
|
*/
|
||||||
|
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
|
||||||
|
float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
|
||||||
|
|
||||||
|
dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment
|
||||||
|
dy_s = current_position[Y_AXIS] - sy;
|
||||||
|
dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
|
||||||
|
// to save computation time
|
||||||
|
dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment
|
||||||
|
dy_e = current_position[Y_AXIS] - ey;
|
||||||
|
dist_end = HYPOT2(dx_e, dy_e);
|
||||||
|
|
||||||
|
dx = ex - sx;
|
||||||
|
dy = ey - sy;
|
||||||
|
Line_Length = HYPOT(dx, dy);
|
||||||
|
|
||||||
|
// If the end point of the line is closer to the nozzle, we are going to
|
||||||
|
// flip the direction of this line. We will print it from the end to the start.
|
||||||
|
// On very small lines we don't do the optimization because it just isn't worth it.
|
||||||
|
//
|
||||||
|
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
|
||||||
|
if (G26_Debug_flag)
|
||||||
|
SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
||||||
|
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Now decide if we should retract.
|
||||||
|
|
||||||
|
if (dist_start > 2.0) {
|
||||||
|
retract_filament();
|
||||||
|
if (G26_Debug_flag)
|
||||||
|
SERIAL_ECHOLNPGM(" filament retracted.");
|
||||||
|
}
|
||||||
|
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
|
||||||
|
|
||||||
|
E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier;
|
||||||
|
|
||||||
|
un_retract_filament();
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
SERIAL_ECHOLNPGM(" doing printing move.");
|
||||||
|
debug_current_and_destination((char *)"doing final move_to() inside print_line_from_here_to_there()");
|
||||||
|
}
|
||||||
|
move_to(ex, ey, ez, E_Pos_Delta); // Get to the ending point with an appropriate amount of extrusion
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This function used to be inline code in G26. But there are so many
|
||||||
|
* parameters it made sense to turn them into static globals and get
|
||||||
|
* this code out of sight of the main routine.
|
||||||
|
*/
|
||||||
|
bool parse_G26_parameters() {
|
||||||
|
|
||||||
|
Extrusion_Multiplier = EXTRUSION_MULTIPLIER;
|
||||||
|
Retraction_Multiplier = RETRACTION_MULTIPLIER;
|
||||||
|
Nozzle = NOZZLE;
|
||||||
|
Filament = FILAMENT;
|
||||||
|
Layer_Height = LAYER_HEIGHT;
|
||||||
|
Prime_Length = PRIME_LENGTH;
|
||||||
|
bed_temp = BED_TEMP;
|
||||||
|
hotend_temp = HOTEND_TEMP;
|
||||||
|
Ooooze_Amount = OOOOZE_AMOUNT;
|
||||||
|
Prime_Flag = 0;
|
||||||
|
Keep_Heaters_On = false;
|
||||||
|
|
||||||
|
if (code_seen('B')) {
|
||||||
|
bed_temp = code_value_float();
|
||||||
|
if (bed_temp < 15.0 || bed_temp > 140.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('C')) Continue_with_closest++;
|
||||||
|
|
||||||
|
if (code_seen('L')) {
|
||||||
|
Layer_Height = code_value_float();
|
||||||
|
if (Layer_Height<0.0 || Layer_Height>2.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('Q')) {
|
||||||
|
if (code_has_value()) {
|
||||||
|
Retraction_Multiplier = code_value_float();
|
||||||
|
if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('N')) {
|
||||||
|
Nozzle = code_value_float();
|
||||||
|
if (Nozzle < 0.1 || Nozzle > 1.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('K')) Keep_Heaters_On++;
|
||||||
|
|
||||||
|
if (code_seen('O') && code_has_value())
|
||||||
|
Ooooze_Amount = code_value_float();
|
||||||
|
|
||||||
|
if (code_seen('P')) {
|
||||||
|
if (!code_has_value())
|
||||||
|
Prime_Flag = -1;
|
||||||
|
else {
|
||||||
|
Prime_Flag++;
|
||||||
|
Prime_Length = code_value_float();
|
||||||
|
if (Prime_Length < 0.0 || Prime_Length > 25.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('F')) {
|
||||||
|
Filament = code_value_float();
|
||||||
|
if (Filament < 1.0 || Filament > 4.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Extrusion_Multiplier *= sq(1.75) / sq(Filament); // If we aren't using 1.75mm filament, we need to
|
||||||
|
// scale up or down the length needed to get the
|
||||||
|
// same volume of filament
|
||||||
|
Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size
|
||||||
|
|
||||||
|
if (code_seen('H')) {
|
||||||
|
hotend_temp = code_value_float();
|
||||||
|
if (hotend_temp < 165.0 || hotend_temp > 280.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('R')) {
|
||||||
|
randomSeed(millis());
|
||||||
|
Random_Deviation = code_has_value() ? code_value_float() : 50.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
X_Pos = current_position[X_AXIS];
|
||||||
|
Y_Pos = current_position[Y_AXIS];
|
||||||
|
|
||||||
|
if (code_seen('X')) {
|
||||||
|
X_Pos = code_value_float();
|
||||||
|
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else
|
||||||
|
|
||||||
|
if (code_seen('Y')) {
|
||||||
|
Y_Pos = code_value_float();
|
||||||
|
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* We save the question of what to do with the Unified Bed Leveling System's Activation until the very
|
||||||
|
* end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
|
||||||
|
* alter the system's status. We wait until we know everything is correct before altering the state
|
||||||
|
* of the system.
|
||||||
|
*/
|
||||||
|
blm.state.active = !code_seen('D');
|
||||||
|
|
||||||
|
return UBL_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Turn on the bed and nozzle heat and
|
||||||
|
* wait for them to get up to temperature.
|
||||||
|
*/
|
||||||
|
bool turn_on_heaters() {
|
||||||
|
#if HAS_TEMP_BED
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
if (bed_temp > 25) {
|
||||||
|
lcd_setstatus("G26 Heating Bed.", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
thermalManager.setTargetBed(bed_temp);
|
||||||
|
while (abs(thermalManager.degBed() - bed_temp) > 3) {
|
||||||
|
if (G29_lcd_clicked()) {
|
||||||
|
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
|
||||||
|
while (G29_lcd_clicked()) idle(); // Debounce the switch
|
||||||
|
lcd_setstatus("Leaving G26", true); // Now we do it right.
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
idle();
|
||||||
|
}
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
}
|
||||||
|
lcd_setstatus("G26 Heating Nozzle.", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Start heating the nozzle and wait for it to reach temperature.
|
||||||
|
thermalManager.setTargetHotend(hotend_temp, 0);
|
||||||
|
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
|
||||||
|
if (G29_lcd_clicked()) {
|
||||||
|
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
|
||||||
|
while (G29_lcd_clicked()) idle(); // Debounce the switch
|
||||||
|
lcd_setstatus("Leaving G26", true); // Now we do it right.
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
idle();
|
||||||
|
}
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus("", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
return UBL_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Prime the nozzle if needed. Return true on error.
|
||||||
|
*/
|
||||||
|
bool prime_nozzle() {
|
||||||
|
float Total_Prime = 0.0;
|
||||||
|
|
||||||
|
if (Prime_Flag == -1) { // The user wants to control how much filament gets purged
|
||||||
|
lcd_setstatus("User Controled Prime", true);
|
||||||
|
chirp_at_user();
|
||||||
|
|
||||||
|
set_destination_to_current();
|
||||||
|
|
||||||
|
un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
|
||||||
|
// retracted(). We are here because we want to prime the nozzle.
|
||||||
|
// So let's just unretract just to be sure.
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
while (!G29_lcd_clicked()) {
|
||||||
|
chirp_at_user();
|
||||||
|
destination[E_AXIS] += 0.25;
|
||||||
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
||||||
|
Total_Prime += 0.25;
|
||||||
|
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
|
||||||
|
#endif
|
||||||
|
UBL_line_to_destination(
|
||||||
|
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||||
|
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
|
||||||
|
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||||
|
);
|
||||||
|
|
||||||
|
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
|
||||||
|
// but because the planner has a buffer, we won't be able
|
||||||
|
// to stop as quickly. So we put up with the less smooth
|
||||||
|
// action to give the user a more responsive 'Stop'.
|
||||||
|
set_destination_to_current();
|
||||||
|
idle();
|
||||||
|
}
|
||||||
|
|
||||||
|
strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
|
||||||
|
// So... We cheat to get a message up.
|
||||||
|
|
||||||
|
while (G29_lcd_clicked()) idle(); // Debounce the switch
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
lcd_setstatus("Done Priming", true); // Now we do it right.
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus("Fixed Length Prime.", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
set_destination_to_current();
|
||||||
|
destination[E_AXIS] += Prime_Length;
|
||||||
|
UBL_line_to_destination(
|
||||||
|
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||||
|
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
|
||||||
|
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||||
|
);
|
||||||
|
stepper.synchronize();
|
||||||
|
set_destination_to_current();
|
||||||
|
retract_filament();
|
||||||
|
}
|
||||||
|
return UBL_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL
|
@ -0,0 +1,331 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#include "math.h"
|
||||||
|
|
||||||
|
#ifndef UNIFIED_BED_LEVELING_H
|
||||||
|
#define UNIFIED_BED_LEVELING_H
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
|
||||||
|
#define UBL_OK false
|
||||||
|
#define UBL_ERR true
|
||||||
|
|
||||||
|
typedef struct {
|
||||||
|
int x_index, y_index;
|
||||||
|
float distance; // Not always used. But when populated, it is the distance
|
||||||
|
// from the search location
|
||||||
|
} mesh_index_pair;
|
||||||
|
|
||||||
|
struct vector { double dx, dy, dz; };
|
||||||
|
|
||||||
|
enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP };
|
||||||
|
|
||||||
|
bool axis_unhomed_error(bool, bool, bool);
|
||||||
|
void dump(char *str, float f);
|
||||||
|
bool G29_lcd_clicked();
|
||||||
|
void probe_entire_mesh(float, float, bool, bool);
|
||||||
|
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||||
|
void manually_probe_remaining_mesh(float, float, float, float, bool);
|
||||||
|
struct vector tilt_mesh_based_on_3pts(float, float, float);
|
||||||
|
void new_set_bed_level_equation_3pts(float, float, float);
|
||||||
|
float measure_business_card_thickness(float);
|
||||||
|
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]);
|
||||||
|
void Find_Mean_Mesh_Height();
|
||||||
|
void Shift_Mesh_Height();
|
||||||
|
bool G29_Parameter_Parsing();
|
||||||
|
void G29_What_Command();
|
||||||
|
void G29_EEPROM_Dump();
|
||||||
|
void G29_Kompare_Current_Mesh_to_Stored_Mesh();
|
||||||
|
void fine_tune_mesh(float, float, float, bool);
|
||||||
|
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||||
|
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||||
|
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||||
|
char *ftostr43sign(const float&, char);
|
||||||
|
|
||||||
|
void gcode_G26();
|
||||||
|
void gcode_G28();
|
||||||
|
void gcode_G29();
|
||||||
|
extern char conv[9];
|
||||||
|
|
||||||
|
void save_UBL_active_state_and_disable();
|
||||||
|
void restore_UBL_active_state_and_leave();
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
extern char lcd_status_message[];
|
||||||
|
void lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
|
||||||
|
|
||||||
|
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
|
||||||
|
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
|
||||||
|
|
||||||
|
extern bool G26_Debug_flag;
|
||||||
|
extern float last_specified_z;
|
||||||
|
extern float fade_scaling_factor_for_current_height;
|
||||||
|
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
|
||||||
|
extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
||||||
|
extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||||
|
|
||||||
|
class bed_leveling {
|
||||||
|
public:
|
||||||
|
struct ubl_state {
|
||||||
|
bool active = false;
|
||||||
|
float z_offset = 0.0;
|
||||||
|
int EEPROM_storage_slot = -1,
|
||||||
|
n_x = UBL_MESH_NUM_X_POINTS,
|
||||||
|
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||||
|
float mesh_x_min = UBL_MESH_MIN_X,
|
||||||
|
mesh_y_min = UBL_MESH_MIN_Y,
|
||||||
|
mesh_x_max = UBL_MESH_MAX_X,
|
||||||
|
mesh_y_max = UBL_MESH_MAX_Y,
|
||||||
|
mesh_x_dist = MESH_X_DIST,
|
||||||
|
mesh_y_dist = MESH_Y_DIST,
|
||||||
|
G29_Correction_Fade_Height = 10.0,
|
||||||
|
G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
|
||||||
|
// point divide. So, we keep this number in both forms. The first
|
||||||
|
// is for the user. The second one is the one that is actually used
|
||||||
|
// again and again and again during the correction calculations.
|
||||||
|
|
||||||
|
unsigned char padding[24]; // This is just to allow room to add state variables without
|
||||||
|
// changing the location of data structures in the EEPROM.
|
||||||
|
// This is for compatability with future versions to keep
|
||||||
|
// people from having to regenerate thier mesh data.
|
||||||
|
//
|
||||||
|
// If you change the contents of this struct, please adjust
|
||||||
|
// the padding[] to keep the size the same!
|
||||||
|
} state, pre_initialized;
|
||||||
|
|
||||||
|
bed_leveling();
|
||||||
|
// ~bed_leveling(); // No destructor because this object never goes away!
|
||||||
|
|
||||||
|
void display_map(int);
|
||||||
|
|
||||||
|
void reset();
|
||||||
|
void invalidate();
|
||||||
|
|
||||||
|
void store_state();
|
||||||
|
void load_state();
|
||||||
|
void store_mesh(int);
|
||||||
|
void load_mesh(int);
|
||||||
|
|
||||||
|
bool sanity_check();
|
||||||
|
|
||||||
|
FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
|
||||||
|
FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
|
||||||
|
|
||||||
|
void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
|
||||||
|
|
||||||
|
int8_t get_cell_index_x(float x) {
|
||||||
|
int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||||
|
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||||
|
} // position. But with this defined this way, it is possible
|
||||||
|
// to extrapolate off of this point even further out. Probably
|
||||||
|
// that is OK because something else should be keeping that from
|
||||||
|
// happening and should not be worried about at this level.
|
||||||
|
int8_t get_cell_index_y(float y) {
|
||||||
|
int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||||
|
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||||
|
} // position. But with this defined this way, it is possible
|
||||||
|
// to extrapolate off of this point even further out. Probably
|
||||||
|
// that is OK because something else should be keeping that from
|
||||||
|
// happening and should not be worried about at this level.
|
||||||
|
|
||||||
|
int8_t find_closest_x_index(float x) {
|
||||||
|
int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||||
|
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
int8_t find_closest_y_index(float y) {
|
||||||
|
int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||||
|
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* z2 --|
|
||||||
|
* z0 | |
|
||||||
|
* | | + (z2-z1)
|
||||||
|
* z1 | | |
|
||||||
|
* ---+-------------+--------+-- --|
|
||||||
|
* a1 a0 a2
|
||||||
|
* |<---delta_a---------->|
|
||||||
|
*
|
||||||
|
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||||
|
* find the expected Z Height at a position between two known Z-Height locations
|
||||||
|
*
|
||||||
|
* It is farly expensive with its 4 floating point additions and 2 floating point
|
||||||
|
* multiplications.
|
||||||
|
*/
|
||||||
|
inline float calc_z0(float a0, float a1, float z1, float a2, float z2) {
|
||||||
|
float delta_z = (z2 - z1);
|
||||||
|
float delta_a = (a0 - a1) / (a2 - a1);
|
||||||
|
return z1 + delta_a * delta_z;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||||
|
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||||
|
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||||
|
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||||
|
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||||
|
* point operations.
|
||||||
|
*/
|
||||||
|
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) {
|
||||||
|
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||||
|
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||||
|
SERIAL_ECHOPAIR(",yi=", yi);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
SERIAL_EOL;
|
||||||
|
return NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||||
|
z1 = z_values[x1_i][yi],
|
||||||
|
z2 = z_values[x1_i + 1][yi],
|
||||||
|
dz = (z2 - z1);
|
||||||
|
|
||||||
|
return z1 + a0ma1diva2ma1 * dz;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||||
|
//
|
||||||
|
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) {
|
||||||
|
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||||
|
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||||
|
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
SERIAL_EOL;
|
||||||
|
return NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||||
|
z1 = z_values[xi][y1_i],
|
||||||
|
z2 = z_values[xi][y1_i + 1],
|
||||||
|
dz = (z2 - z1);
|
||||||
|
|
||||||
|
return z1 + a0ma1diva2ma1 * dz;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||||
|
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||||
|
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||||
|
* on the Y position within the cell.
|
||||||
|
*/
|
||||||
|
float get_z_correction(float x0, float y0) {
|
||||||
|
int8_t cx = get_cell_index_x(x0),
|
||||||
|
cy = get_cell_index_y(y0);
|
||||||
|
|
||||||
|
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||||
|
SERIAL_ECHOPAIR(", y0=", y0);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
return 0.0; // this used to return state.z_offset
|
||||||
|
}
|
||||||
|
|
||||||
|
float z1 = calc_z0(x0,
|
||||||
|
map_x_index_to_bed_location(cx), z_values[cx][cy],
|
||||||
|
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]);
|
||||||
|
float z2 = calc_z0(x0,
|
||||||
|
map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
|
||||||
|
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
|
||||||
|
float z0 = calc_z0(y0,
|
||||||
|
map_y_index_to_bed_location(cy), z1,
|
||||||
|
map_y_index_to_bed_location(cy + 1), z2);
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(MESH_ADJUST)) {
|
||||||
|
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||||
|
SERIAL_ECHOPAIR(",", y0);
|
||||||
|
SERIAL_ECHOPGM(")=");
|
||||||
|
SERIAL_PROTOCOL_F(z0, 6);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(MESH_ADJUST)) {
|
||||||
|
SERIAL_ECHOPGM(" >>>---> ");
|
||||||
|
SERIAL_PROTOCOL_F(z0, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in blm.z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(MESH_ADJUST)) {
|
||||||
|
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
|
||||||
|
SERIAL_ECHO(x0);
|
||||||
|
SERIAL_ECHOPGM(", ");
|
||||||
|
SERIAL_ECHO(y0);
|
||||||
|
SERIAL_ECHOLNPGM(" )");
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
return z0; // there used to be a +state.z_offset on this line
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
|
||||||
|
* optimized for speed. It avoids floating point operations by checking if the requested scaling
|
||||||
|
* factor is going to be the same as the last time the function calculated a value. If so, it just
|
||||||
|
* returns it.
|
||||||
|
*
|
||||||
|
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
|
||||||
|
* or if the current Z Height is past the specified 'Fade Height'
|
||||||
|
*/
|
||||||
|
FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) {
|
||||||
|
if (last_specified_z == current_z)
|
||||||
|
return fade_scaling_factor_for_current_height;
|
||||||
|
|
||||||
|
last_specified_z = current_z;
|
||||||
|
fade_scaling_factor_for_current_height =
|
||||||
|
state.active && current_z < state.G29_Correction_Fade_Height
|
||||||
|
? 1.0 - (current_z * state.G29_Fade_Height_Multiplier)
|
||||||
|
: 0.0;
|
||||||
|
return fade_scaling_factor_for_current_height;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
extern bed_leveling blm;
|
||||||
|
extern int Unified_Bed_Leveling_EEPROM_start;
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL
|
||||||
|
#endif // UNIFIED_BED_LEVELING_H
|
@ -0,0 +1,296 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#include "math.h"
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
#include "UBL.h"
|
||||||
|
#include "hex_print_routines.h"
|
||||||
|
|
||||||
|
/**
|
||||||
|
* These variables used to be declared inside the bed_leveling class. We are going to still declare
|
||||||
|
* them within the .cpp file for bed leveling. But there is only one instance of the bed leveling
|
||||||
|
* object and we can get rid of a level of inderection by not making them 'member data'. So, in the
|
||||||
|
* interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved
|
||||||
|
* back inside the bed leveling class.
|
||||||
|
*/
|
||||||
|
float last_specified_z,
|
||||||
|
fade_scaling_factor_for_current_height,
|
||||||
|
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||||
|
mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
||||||
|
mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||||
|
|
||||||
|
bed_leveling::bed_leveling() {
|
||||||
|
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||||
|
mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
|
||||||
|
|
||||||
|
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||||
|
mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
|
||||||
|
|
||||||
|
reset();
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::store_state() {
|
||||||
|
int k = E2END - sizeof(blm.state);
|
||||||
|
eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state));
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::load_state() {
|
||||||
|
int k = E2END - sizeof(blm.state);
|
||||||
|
eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state));
|
||||||
|
|
||||||
|
if (sanity_check())
|
||||||
|
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
|
||||||
|
|
||||||
|
// These lines can go away in a few weeks. They are just
|
||||||
|
// to make sure people updating thier firmware won't be using
|
||||||
|
if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed
|
||||||
|
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of
|
||||||
|
store_state(); // dividing by it. Soon... all of the old structures will be
|
||||||
|
} // updated, but until then, we try to ease the transition
|
||||||
|
// for our Beta testers.
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::load_mesh(int m) {
|
||||||
|
int k = E2END - sizeof(blm.state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (m == -1) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
|
||||||
|
reset();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
j = k - (m + 1) * sizeof(z_values);
|
||||||
|
eeprom_read_block((void *)&z_values , (void *)j, sizeof(z_values));
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Mesh loaded from slot ");
|
||||||
|
SERIAL_PROTOCOL(m);
|
||||||
|
SERIAL_PROTOCOLPGM(" at offset 0x");
|
||||||
|
prt_hex_word(j);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling:: store_mesh(int m) {
|
||||||
|
int k = E2END - sizeof(state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||||
|
SERIAL_PROTOCOL(m);
|
||||||
|
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
|
||||||
|
SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
|
||||||
|
SERIAL_PROTOCOLLNPAIR("k : ", k);
|
||||||
|
SERIAL_PROTOCOLLNPAIR("j : ", j);
|
||||||
|
SERIAL_PROTOCOLLNPAIR("m : ", m);
|
||||||
|
SERIAL_EOL;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
j = k - (m + 1) * sizeof(z_values);
|
||||||
|
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Mesh saved in slot ");
|
||||||
|
SERIAL_PROTOCOL(m);
|
||||||
|
SERIAL_PROTOCOLPGM(" at offset 0x");
|
||||||
|
prt_hex_word(j);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::reset() {
|
||||||
|
state.active = false;
|
||||||
|
state.z_offset = 0;
|
||||||
|
state.EEPROM_storage_slot = -1;
|
||||||
|
|
||||||
|
ZERO(z_values);
|
||||||
|
|
||||||
|
last_specified_z = -999.9; // We can't pre-initialize these values in the declaration
|
||||||
|
fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::invalidate() {
|
||||||
|
prt_hex_word((unsigned int)this);
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
state.active = false;
|
||||||
|
state.z_offset = 0;
|
||||||
|
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||||
|
for (int y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||||
|
z_values[x][y] = NAN;
|
||||||
|
}
|
||||||
|
|
||||||
|
void bed_leveling::display_map(int map_type) {
|
||||||
|
float f, current_xi, current_yi;
|
||||||
|
int8_t i, j;
|
||||||
|
UNUSED(map_type);
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", 0);
|
||||||
|
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
|
||||||
|
SERIAL_ECHOPGM(") ");
|
||||||
|
|
||||||
|
current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
|
||||||
|
current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1);
|
||||||
|
SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
|
||||||
|
// if (map_type || 1) {
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
|
||||||
|
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
|
||||||
|
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
|
||||||
|
SERIAL_ECHOLNPGM(")");
|
||||||
|
// }
|
||||||
|
|
||||||
|
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
f = z_values[i][j];
|
||||||
|
|
||||||
|
// is the nozzle here? if so, mark the number
|
||||||
|
SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' ');
|
||||||
|
|
||||||
|
if (isnan(f))
|
||||||
|
SERIAL_PROTOCOLPGM(" . ");
|
||||||
|
else {
|
||||||
|
// if we don't do this, the columns won't line up nicely
|
||||||
|
if (f >= 0.0) SERIAL_CHAR(' ');
|
||||||
|
SERIAL_PROTOCOL_F(f, 5);
|
||||||
|
idle();
|
||||||
|
}
|
||||||
|
if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number
|
||||||
|
SERIAL_CHAR(']');
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOL(" ");
|
||||||
|
|
||||||
|
SERIAL_CHAR(' ');
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
if (j) { // we want the (0,0) up tight against the block of numbers
|
||||||
|
SERIAL_CHAR(' ');
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// if (map_type) {
|
||||||
|
SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X));
|
||||||
|
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
|
||||||
|
SERIAL_ECHOPGM(") ");
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X));
|
||||||
|
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
// }
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", 0);
|
||||||
|
SERIAL_ECHOPAIR(",", 0);
|
||||||
|
SERIAL_ECHOPGM(") ");
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||||
|
SERIAL_ECHOPGM(" ");
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1);
|
||||||
|
SERIAL_ECHOPAIR(",", 0);
|
||||||
|
SERIAL_CHAR(')');
|
||||||
|
|
||||||
|
SERIAL_CHAR(' ');
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool bed_leveling::sanity_check() {
|
||||||
|
uint8_t error_flag = 0;
|
||||||
|
|
||||||
|
if (state.n_x != UBL_MESH_NUM_X_POINTS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_x_min != UBL_MESH_MIN_X) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_x_max != UBL_MESH_MAX_X) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_x_dist != MESH_X_DIST) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (state.mesh_y_dist != MESH_Y_DIST) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
int k = E2END - sizeof(blm.state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (j < 1) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
|
||||||
|
error_flag++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
|
||||||
|
// SERIAL_PROTOCOL(error_flag);
|
||||||
|
// SERIAL_EOL;
|
||||||
|
|
||||||
|
return !!error_flag;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL
|
@ -0,0 +1,1455 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
//#include "vector_3.h"
|
||||||
|
//#include "qr_solve.h"
|
||||||
|
|
||||||
|
#include "UBL.h"
|
||||||
|
#include "hex_print_routines.h"
|
||||||
|
#include "configuration_store.h"
|
||||||
|
#include "planner.h"
|
||||||
|
#include "ultralcd.h"
|
||||||
|
|
||||||
|
#include <avr/io.h>
|
||||||
|
|
||||||
|
void lcd_babystep_z();
|
||||||
|
void lcd_return_to_status();
|
||||||
|
bool lcd_clicked();
|
||||||
|
void lcd_implementation_clear();
|
||||||
|
void lcd_mesh_edit_setup(float inital);
|
||||||
|
float lcd_mesh_edit();
|
||||||
|
void lcd_z_offset_edit_setup(float);
|
||||||
|
float lcd_z_offset_edit();
|
||||||
|
|
||||||
|
extern float meshedit_done;
|
||||||
|
extern long babysteps_done;
|
||||||
|
extern float code_value_float();
|
||||||
|
extern bool code_value_bool();
|
||||||
|
extern bool code_has_value();
|
||||||
|
extern float probe_pt(float x, float y, bool, int);
|
||||||
|
extern float zprobe_zoffset;
|
||||||
|
extern bool set_probe_deployed(bool);
|
||||||
|
#define DEPLOY_PROBE() set_probe_deployed(true)
|
||||||
|
#define STOW_PROBE() set_probe_deployed(false)
|
||||||
|
bool ProbeStay = true;
|
||||||
|
float ubl_3_point_1_X = UBL_PROBE_PT_1_X;
|
||||||
|
float ubl_3_point_1_Y = UBL_PROBE_PT_1_Y;
|
||||||
|
float ubl_3_point_2_X = UBL_PROBE_PT_2_X;
|
||||||
|
float ubl_3_point_2_Y = UBL_PROBE_PT_2_Y;
|
||||||
|
float ubl_3_point_3_X = UBL_PROBE_PT_3_X;
|
||||||
|
float ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
|
||||||
|
|
||||||
|
#define SIZE_OF_LITTLE_RAISE 0
|
||||||
|
#define BIG_RAISE_NOT_NEEDED 0
|
||||||
|
extern void lcd_quick_feedback();
|
||||||
|
|
||||||
|
/**
|
||||||
|
* G29: Unified Bed Leveling by Roxy
|
||||||
|
*/
|
||||||
|
|
||||||
|
// Transform required to compensate for bed level
|
||||||
|
//extern matrix_3x3 plan_bed_level_matrix;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get the position applying the bed level matrix
|
||||||
|
*/
|
||||||
|
|
||||||
|
//vector_3 plan_get_position();
|
||||||
|
|
||||||
|
// static void set_bed_level_equation_lsq(double* plane_equation_coefficients);
|
||||||
|
// static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* G29: Mesh Based Compensation System
|
||||||
|
*
|
||||||
|
* Parameters understood by this leveling system:
|
||||||
|
*
|
||||||
|
* A Activate Activate the Unified Bed Leveling system.
|
||||||
|
*
|
||||||
|
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
|
||||||
|
* G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
|
||||||
|
* as a shim that the nozzle will pinch as it is lowered. The idea is that you
|
||||||
|
* can easily feel the nozzle getting to the same height by the amount of resistance
|
||||||
|
* the business card exhibits to movement. You should try to achieve the same amount
|
||||||
|
* of resistance on each probed point to facilitate accurate and repeatable measurements.
|
||||||
|
* You should be very careful not to drive the nozzle into the bussiness card with a
|
||||||
|
* lot of force as it is very possible to cause damage to your printer if your are
|
||||||
|
* careless. If you use the B option with G29 P2 B you can leave the number parameter off
|
||||||
|
* on its first use to enable measurement of the business card thickness. Subsequent usage
|
||||||
|
* of the B parameter can have the number previously measured supplied to the command.
|
||||||
|
* Incidently, you are much better off using something like a Spark Gap feeler gauge than
|
||||||
|
* something that compresses like a Business Card.
|
||||||
|
*
|
||||||
|
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
|
||||||
|
* further refine the behaviour of several other commands. Issuing a G29 P1 C will
|
||||||
|
* continue the generation of a partially constructed Mesh without invalidating what has
|
||||||
|
* been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
|
||||||
|
* location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
|
||||||
|
* it indicates to use the current location instead of defaulting to the center of the print bed.
|
||||||
|
*
|
||||||
|
* D Disable Disable the Unified Bed Leveling system.
|
||||||
|
*
|
||||||
|
* E Stow_probe Stow the probe after each sampled point.
|
||||||
|
*
|
||||||
|
* F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the specified height,
|
||||||
|
* no correction is applied and natural printer kenimatics take over. If no number is specified
|
||||||
|
* for the command, 10mm is assummed to be reasonable.
|
||||||
|
*
|
||||||
|
* G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on
|
||||||
|
* a side.
|
||||||
|
*
|
||||||
|
* H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
|
||||||
|
* default is 5mm.
|
||||||
|
*
|
||||||
|
* I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
|
||||||
|
* the X and Y parameter are used. If no number is specified, only the closest Mesh
|
||||||
|
* point to the location is invalidated. The M parameter is available as well to produce
|
||||||
|
* a map after the operation. This command is useful to invalidate a portion of the
|
||||||
|
* Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
|
||||||
|
* attempting to invalidate an isolated bad point in the mesh, the M option will indicate
|
||||||
|
* where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
|
||||||
|
* the bed and use this feature to select the center of the area (or cell) you want to
|
||||||
|
* invalidate.
|
||||||
|
*
|
||||||
|
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
|
||||||
|
* command litterly performs a difference between two Mesh.
|
||||||
|
*
|
||||||
|
* L Load * Load Mesh from the previously activated location in the EEPROM.
|
||||||
|
*
|
||||||
|
* L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
|
||||||
|
* for subsequent Load and Store operations.
|
||||||
|
*
|
||||||
|
* O Map * Display the Mesh Map Topology.
|
||||||
|
* The parameter can be specified alone (ie. G29 O) or in combination with many of the
|
||||||
|
* other commands. The Mesh Map option works with all of the Phase
|
||||||
|
* commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)
|
||||||
|
*
|
||||||
|
* N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
|
||||||
|
* N option. In general, you should not do this. This can only be done safely with
|
||||||
|
* commands that do not move the nozzle.
|
||||||
|
*
|
||||||
|
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
|
||||||
|
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
|
||||||
|
* each additional Phase that processes it.
|
||||||
|
*
|
||||||
|
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
|
||||||
|
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
|
||||||
|
* was turned on. Setting the entire Mesh to Zero is a special case that allows
|
||||||
|
* a subsequent G or T leveling operation for backward compatability.
|
||||||
|
*
|
||||||
|
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
|
||||||
|
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
|
||||||
|
* DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
|
||||||
|
* generated. This will be handled in Phase 2. If the Phase 1 command is given the
|
||||||
|
* C (Continue) parameter it does not invalidate the Mesh prior to automatically
|
||||||
|
* probing needed locations. This allows you to invalidate portions of the Mesh but still
|
||||||
|
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
|
||||||
|
* parameter can be given to prioritize where the command should be trying to measure points.
|
||||||
|
* If the X and Y parameters are not specified the current probe position is used. Phase 1
|
||||||
|
* allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
|
||||||
|
* Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
|
||||||
|
* It will suspend generation of the Mesh if it sees the user request that. (This check is
|
||||||
|
* only done between probe points. You will need to press and hold the switch until the
|
||||||
|
* Phase 1 command can detect it.)
|
||||||
|
*
|
||||||
|
* P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
|
||||||
|
* parameter to control the height between Mesh points. The default height for movement
|
||||||
|
* between Mesh points is 5mm. A smaller number can be used to make this part of the
|
||||||
|
* calibration less time consuming. You will be running the nozzle down until it just barely
|
||||||
|
* touches the glass. You should have the nozzle clean with no plastic obstructing your view.
|
||||||
|
* Use caution and move slowly. It is possible to damage your printer if you are careless.
|
||||||
|
* Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
|
||||||
|
* nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
|
||||||
|
*
|
||||||
|
* The H parameter can be set negative if your Mesh dips in a large area. You can press
|
||||||
|
* and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
|
||||||
|
* can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
|
||||||
|
* area you are manually probing. Note that the command tries to start you in a corner
|
||||||
|
* of the bed where movement will be predictable. You can force the location to be used in
|
||||||
|
* the distance calculations by using the X and Y parameters. You may find it is helpful to
|
||||||
|
* print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
|
||||||
|
* the nozzle will need to move in order to complete the command. The C parameter is
|
||||||
|
* available on the Phase 2 command also and indicates the search for points to measure should
|
||||||
|
* be done based on the current location of the nozzle.
|
||||||
|
*
|
||||||
|
* A B parameter is also available for this command and described up above. It places the
|
||||||
|
* manual probe subsystem into Business Card mode where the thickness of a business care is
|
||||||
|
* measured and then used to accurately set the nozzle height in all manual probing for the
|
||||||
|
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed
|
||||||
|
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
|
||||||
|
* better results if you use a flexible Shim that does not compress very much. That makes it
|
||||||
|
* easier for you to get the nozzle to press with similar amounts of force against the shim so you
|
||||||
|
* can get accurate measurements. As you are starting to touch the nozzle against the shim try
|
||||||
|
* to get it to grasp the shim with the same force as when you measured the thickness of the
|
||||||
|
* shim at the start of the command.
|
||||||
|
*
|
||||||
|
* Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
|
||||||
|
* of the Mesh being built.
|
||||||
|
*
|
||||||
|
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is used to
|
||||||
|
* specify the Constant value to fill all invalid areas of the Mesh. If no C parameter is
|
||||||
|
* specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
|
||||||
|
* of points to set. If the R parameter is specified the current nozzle position is used to
|
||||||
|
* find the closest points to alter unless the X and Y parameter are used to specify the fill
|
||||||
|
* location.
|
||||||
|
*
|
||||||
|
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
|
||||||
|
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
|
||||||
|
* (More work and details on doing this later!)
|
||||||
|
* The System will search for the closest Mesh Point to the nozzle. It will move the
|
||||||
|
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
|
||||||
|
* so it is just barely touching the bed. When the user clicks the control, the System
|
||||||
|
* will lock in that height for that point in the Mesh Compensation System.
|
||||||
|
*
|
||||||
|
* Phase 4 has several additional parameters that the user may find helpful. Phase 4
|
||||||
|
* can be started at a specific location by specifying an X and Y parameter. Phase 4
|
||||||
|
* can be requested to continue the adjustment of Mesh Points by using the R(epeat)
|
||||||
|
* parameter. If the Repetition count is not specified, it is assumed the user wishes
|
||||||
|
* to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
|
||||||
|
* The command can be terminated early (or after the area of interest has been edited) by
|
||||||
|
* pressing and holding the encoder wheel until the system recognizes the exit request.
|
||||||
|
* Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
|
||||||
|
*
|
||||||
|
* Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
|
||||||
|
* information left on the printer's bed from the G26 command it is very straight forward
|
||||||
|
* and easy to fine tune the Mesh. One concept that is important to remember and that
|
||||||
|
* will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
|
||||||
|
* If you have too little clearance and not much plastic was extruded in an area, you want to
|
||||||
|
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
|
||||||
|
* RAISE the Mesh Point at that location.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
|
||||||
|
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
|
||||||
|
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
|
||||||
|
* execute a G29 P6 C <mean height>.
|
||||||
|
*
|
||||||
|
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
|
||||||
|
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
|
||||||
|
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
|
||||||
|
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
|
||||||
|
* 0.000 at the Z Home location.
|
||||||
|
*
|
||||||
|
* Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
|
||||||
|
* command is not anticipated to be of much value to the typical user. It is intended
|
||||||
|
* for developers to help them verify correct operation of the Unified Bed Leveling System.
|
||||||
|
*
|
||||||
|
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
|
||||||
|
* current state of the Unified Bed Leveling system in the EEPROM.
|
||||||
|
*
|
||||||
|
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
|
||||||
|
* for subsequent Load and Store operations. It will also store the current state of
|
||||||
|
* the Unified Bed Leveling system in the EEPROM.
|
||||||
|
*
|
||||||
|
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
|
||||||
|
* the system at a later date. The text generated can be saved and later sent by PronterFace or
|
||||||
|
* Repetier Host to reconstruct the current mesh on another machine.
|
||||||
|
*
|
||||||
|
* T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
|
||||||
|
*
|
||||||
|
* W What? Display valuable data the Unified Bed Leveling System knows.
|
||||||
|
*
|
||||||
|
* X # * * Specify X Location for this line of commands
|
||||||
|
*
|
||||||
|
* Y # * * Specify Y Location for this line of commands
|
||||||
|
*
|
||||||
|
* Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
|
||||||
|
* by just doing a G29 Z
|
||||||
|
*
|
||||||
|
* Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
|
||||||
|
* zprobe_zoffset is added to the calculation.
|
||||||
|
*
|
||||||
|
*
|
||||||
|
* Release Notes:
|
||||||
|
* You MUST do a M502 & M500 pair of commands to initialize the storage. Failure to do this
|
||||||
|
* will cause all kinds of problems. Enabling EEPROM Storage is highly recommended. With
|
||||||
|
* EEPROM Storage of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and
|
||||||
|
* G29 P0 G respectively.)
|
||||||
|
*
|
||||||
|
* Z-Probe Sleds are not currently fully supported. There were too many complications caused
|
||||||
|
* by them to support them in the Unified Bed Leveling code. Support for them will be handled
|
||||||
|
* better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That
|
||||||
|
* is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it
|
||||||
|
* should slip in under the Unified Bed Leveling code without major trauma.
|
||||||
|
*
|
||||||
|
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
|
||||||
|
* the Unified Bed Leveling probes points further and further away from the starting location. (The
|
||||||
|
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
|
||||||
|
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
|
||||||
|
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
|
||||||
|
* perform a small print and check out your settings quicker. You do not need to populate the
|
||||||
|
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
|
||||||
|
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
|
||||||
|
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
|
||||||
|
*
|
||||||
|
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
|
||||||
|
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as
|
||||||
|
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
|
||||||
|
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
|
||||||
|
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but
|
||||||
|
* this is going to be helpful to the users!)
|
||||||
|
*
|
||||||
|
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
|
||||||
|
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
|
||||||
|
* we now have the functionality and features of all three systems combined.
|
||||||
|
*/
|
||||||
|
|
||||||
|
int Unified_Bed_Leveling_EEPROM_start = -1;
|
||||||
|
int UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
volatile int G29_encoderDiff = 0; // This is volatile because it is getting changed at interrupt time.
|
||||||
|
|
||||||
|
// We keep the simple parameter flags and values as 'static' because we break out the
|
||||||
|
// parameter parsing into a support routine.
|
||||||
|
|
||||||
|
static int G29_Verbose_Level = 0, Test_Value = 0,
|
||||||
|
Phase_Value = -1, Repetition_Cnt = 1;
|
||||||
|
static bool Repeat_Flag = UBL_OK, C_Flag = false, X_Flag = UBL_OK, Y_Flag = UBL_OK, Statistics_Flag = UBL_OK, Business_Card_Mode = false;
|
||||||
|
static float X_Pos = 0.0, Y_Pos = 0.0, Height_Value = 5.0, measured_z, card_thickness = 0.0, Constant = 0.0;
|
||||||
|
static int Storage_Slot = 0, Test_Pattern = 0;
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
void lcd_setstatus(const char* message, bool persist);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
void gcode_G29() {
|
||||||
|
mesh_index_pair location;
|
||||||
|
int i, j, k;
|
||||||
|
float Z1, Z2, Z3;
|
||||||
|
|
||||||
|
G29_Verbose_Level = 0; // These may change, but let's get some reasonable values into them.
|
||||||
|
Repeat_Flag = UBL_OK;
|
||||||
|
Repetition_Cnt = 1;
|
||||||
|
C_Flag = false;
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Unified_Bed_Leveling_EEPROM_start=");
|
||||||
|
SERIAL_PROTOCOLLN(Unified_Bed_Leveling_EEPROM_start);
|
||||||
|
|
||||||
|
if (Unified_Bed_Leveling_EEPROM_start < 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it ");
|
||||||
|
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
|
||||||
|
gcode_G28();
|
||||||
|
|
||||||
|
if (G29_Parameter_Parsing()) return; // abort if parsing the simple parameters causes a problem,
|
||||||
|
|
||||||
|
// Invalidate Mesh Points. This command is a little bit asymetrical because
|
||||||
|
// it directly specifies the repetition count and does not use the 'R' parameter.
|
||||||
|
if (code_seen('I')) {
|
||||||
|
Repetition_Cnt = code_has_value() ? code_value_int() : 1;
|
||||||
|
while (Repetition_Cnt--) {
|
||||||
|
location = find_closest_mesh_point_of_type(REAL, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
||||||
|
if (location.x_index < 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
|
||||||
|
break; // No more invalid Mesh Points to populate
|
||||||
|
}
|
||||||
|
z_values[location.x_index][location.y_index] = NAN;
|
||||||
|
}
|
||||||
|
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('Q')) {
|
||||||
|
|
||||||
|
if (code_has_value()) Test_Pattern = code_value_int();
|
||||||
|
|
||||||
|
if (Test_Pattern < 0 || Test_Pattern > 4) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Invalid Test_Pattern value. (0-4)\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
SERIAL_PROTOCOLLNPGM("Loading Test_Pattern values.\n");
|
||||||
|
switch (Test_Pattern) {
|
||||||
|
case 0:
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a bowl shape. This is
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { // similar to what a user would see with
|
||||||
|
Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - i; // a poorly calibrated Delta.
|
||||||
|
Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - j;
|
||||||
|
z_values[i][j] += 2.0 * HYPOT(Z1, Z2);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 1:
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a diagonal line several Mesh
|
||||||
|
z_values[i][i] += 9.999; // cells thick that is raised
|
||||||
|
if (i < UBL_MESH_NUM_Y_POINTS - 1)
|
||||||
|
z_values[i][i + 1] += 9.999; // We want the altered line several mesh points thick
|
||||||
|
if (i > 0)
|
||||||
|
z_values[i][i - 1] += 9.999; // We want the altered line several mesh points thick
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case 2:
|
||||||
|
// Allow the user to specify the height because 10mm is
|
||||||
|
// a little bit extreme in some cases.
|
||||||
|
for (i = (UBL_MESH_NUM_X_POINTS) / 3.0; i < 2 * ((UBL_MESH_NUM_X_POINTS) / 3.0); i++) // Create a rectangular raised area in
|
||||||
|
for (j = (UBL_MESH_NUM_Y_POINTS) / 3.0; j < 2 * ((UBL_MESH_NUM_Y_POINTS) / 3.0); j++) // the center of the bed
|
||||||
|
z_values[i][j] += code_seen('C') ? Constant : 9.99;
|
||||||
|
break;
|
||||||
|
case 3:
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('P')) {
|
||||||
|
Phase_Value = code_value_int();
|
||||||
|
if (Phase_Value < 0 || Phase_Value > 7) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
switch (Phase_Value) {
|
||||||
|
//
|
||||||
|
// Zero Mesh Data
|
||||||
|
//
|
||||||
|
case 0:
|
||||||
|
blm.reset();
|
||||||
|
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
|
||||||
|
break;
|
||||||
|
//
|
||||||
|
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
|
||||||
|
//
|
||||||
|
case 1:
|
||||||
|
if (!code_seen('C') ) {
|
||||||
|
blm.invalidate();
|
||||||
|
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
|
||||||
|
}
|
||||||
|
if (G29_Verbose_Level > 1) {
|
||||||
|
SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
|
||||||
|
SERIAL_ECHO(X_Pos);
|
||||||
|
SERIAL_ECHOPAIR(",", Y_Pos);
|
||||||
|
SERIAL_PROTOCOLLNPGM(")\n");
|
||||||
|
}
|
||||||
|
probe_entire_mesh( X_Pos+X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER,
|
||||||
|
code_seen('O') || code_seen('M'), code_seen('E'));
|
||||||
|
break;
|
||||||
|
//
|
||||||
|
// Manually Probe Mesh in areas that can not be reached by the probe
|
||||||
|
//
|
||||||
|
case 2:
|
||||||
|
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
||||||
|
if (!X_Flag && !Y_Flag) { // use a good default location for the path
|
||||||
|
X_Pos = X_MIN_POS;
|
||||||
|
Y_Pos = Y_MIN_POS;
|
||||||
|
if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
|
||||||
|
X_Pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
|
||||||
|
|
||||||
|
if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
|
||||||
|
Y_Pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
|
||||||
|
|
||||||
|
} // For now, until that is decided, it can be forced with the X
|
||||||
|
// and Y parameters.
|
||||||
|
if (code_seen('C')) {
|
||||||
|
X_Pos = current_position[X_AXIS];
|
||||||
|
Y_Pos = current_position[Y_AXIS];
|
||||||
|
}
|
||||||
|
|
||||||
|
Height_Value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
|
||||||
|
|
||||||
|
if ((Business_Card_Mode = code_seen('B'))) {
|
||||||
|
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(Height_Value);
|
||||||
|
|
||||||
|
if (fabs(card_thickness) > 1.5) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
manually_probe_remaining_mesh( X_Pos, Y_Pos, Height_Value, card_thickness, code_seen('O') || code_seen('M'));
|
||||||
|
break;
|
||||||
|
//
|
||||||
|
// Populate invalid Mesh areas with a constant
|
||||||
|
//
|
||||||
|
case 3:
|
||||||
|
Height_Value = 0.0; // Assume 0.0 until proven otherwise
|
||||||
|
if (code_seen('C')) Height_Value = Constant;
|
||||||
|
// If no repetition is specified, do the whole Mesh
|
||||||
|
if (!Repeat_Flag) Repetition_Cnt = 9999;
|
||||||
|
while (Repetition_Cnt--) {
|
||||||
|
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
||||||
|
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
|
||||||
|
z_values[location.x_index][location.y_index] = Height_Value;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
//
|
||||||
|
// Fine Tune (Or Edit) the Mesh
|
||||||
|
//
|
||||||
|
case 4:
|
||||||
|
fine_tune_mesh(X_Pos, Y_Pos, Height_Value, code_seen('O') || code_seen('M'));
|
||||||
|
break;
|
||||||
|
case 5:
|
||||||
|
Find_Mean_Mesh_Height();
|
||||||
|
break;
|
||||||
|
case 6:
|
||||||
|
Shift_Mesh_Height();
|
||||||
|
break;
|
||||||
|
|
||||||
|
case 10:
|
||||||
|
UBL_has_control_of_LCD_Panel++; // Debug code... Pan no attention to this stuff
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM("Checking G29 has control of LCD Panel:\n");
|
||||||
|
while(!G29_lcd_clicked()) {
|
||||||
|
idle();
|
||||||
|
delay(250);
|
||||||
|
SERIAL_PROTOCOL(G29_encoderDiff);
|
||||||
|
G29_encoderDiff = 0;
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
while (G29_lcd_clicked()) idle();
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;;
|
||||||
|
SERIAL_ECHOPGM("G29 giving back control of LCD Panel.\n");
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('T')) {
|
||||||
|
Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
|
||||||
|
Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
|
||||||
|
Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
|
||||||
|
|
||||||
|
// We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
||||||
|
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
|
||||||
|
|
||||||
|
Z1 -= blm.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
|
||||||
|
Z2 -= blm.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
|
||||||
|
Z3 -= blm.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
|
||||||
|
|
||||||
|
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
|
||||||
|
tilt_mesh_based_on_3pts(Z1, Z2, Z3);
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
||||||
|
// good to have the extra information. Soon... we prune this to just a few items
|
||||||
|
//
|
||||||
|
if (code_seen('W')) G29_What_Command();
|
||||||
|
|
||||||
|
//
|
||||||
|
// When we are fully debugged, the EEPROM dump command will get deleted also. But
|
||||||
|
// right now, it is good to have the extra information. Soon... we prune this.
|
||||||
|
//
|
||||||
|
if (code_seen('J')) G29_EEPROM_Dump(); // EEPROM Dump
|
||||||
|
|
||||||
|
//
|
||||||
|
// When we are fully debugged, this may go away. But there are some valid
|
||||||
|
// use cases for the users. So we can wait and see what to do with it.
|
||||||
|
//
|
||||||
|
|
||||||
|
if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
|
||||||
|
G29_Kompare_Current_Mesh_to_Stored_Mesh();
|
||||||
|
|
||||||
|
//
|
||||||
|
// Load a Mesh from the EEPROM
|
||||||
|
//
|
||||||
|
|
||||||
|
if (code_seen('L')) { // Load Current Mesh Data
|
||||||
|
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
|
||||||
|
|
||||||
|
k = E2END - sizeof(blm.state);
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
blm.load_mesh(Storage_Slot);
|
||||||
|
blm.state.EEPROM_storage_slot = Storage_Slot;
|
||||||
|
if (Storage_Slot != blm.state.EEPROM_storage_slot)
|
||||||
|
blm.store_state();
|
||||||
|
SERIAL_PROTOCOLLNPGM("Done.\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Store a Mesh in the EEPROM
|
||||||
|
//
|
||||||
|
|
||||||
|
if (code_seen('S')) { // Store (or Save) Current Mesh Data
|
||||||
|
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
|
||||||
|
|
||||||
|
if (Storage_Slot == -1) { // Special case, we are going to 'Export' the mesh to the
|
||||||
|
SERIAL_ECHOPGM("G29 I 999\n"); // host in a form it can be reconstructed on a different machine
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
if (!isnan(z_values[i][j])) {
|
||||||
|
SERIAL_ECHOPAIR("M421 I ", i);
|
||||||
|
SERIAL_ECHOPAIR(" J ", j);
|
||||||
|
SERIAL_ECHOPGM(" Z ");
|
||||||
|
SERIAL_PROTOCOL_F(z_values[i][j], 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int k = E2END - sizeof(blm.state),
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||||
|
|
||||||
|
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||||
|
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
blm.store_mesh(Storage_Slot);
|
||||||
|
blm.state.EEPROM_storage_slot = Storage_Slot;
|
||||||
|
//
|
||||||
|
// if (Storage_Slot != blm.state.EEPROM_storage_slot)
|
||||||
|
blm.store_state(); // Always save an updated copy of the UBL State info
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLNPGM("Done.\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('O') || code_seen('M')) {
|
||||||
|
i = code_has_value() ? code_value_int() : 0;
|
||||||
|
blm.display_map(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('Z')) {
|
||||||
|
if (code_has_value()) {
|
||||||
|
blm.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
save_UBL_active_state_and_disable();
|
||||||
|
//measured_z = probe_pt(X_Pos + X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, G29_Verbose_Level);
|
||||||
|
|
||||||
|
measured_z = 1.5;
|
||||||
|
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
|
||||||
|
// The user is not going to be locking in a new Z-Offset very often so
|
||||||
|
// it won't be that painful to spin the Encoder Wheel for 1.5mm
|
||||||
|
lcd_implementation_clear();
|
||||||
|
lcd_z_offset_edit_setup(measured_z);
|
||||||
|
do {
|
||||||
|
measured_z = lcd_z_offset_edit();
|
||||||
|
idle();
|
||||||
|
do_blocking_move_to_z(measured_z);
|
||||||
|
} while (!G29_lcd_clicked());
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
|
||||||
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
|
||||||
|
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
||||||
|
// we need to take control of the panel
|
||||||
|
millis_t nxt = millis() + 1500UL;
|
||||||
|
lcd_return_to_status();
|
||||||
|
while (G29_lcd_clicked()) { // debounce and watch for abort
|
||||||
|
idle();
|
||||||
|
if (ELAPSED(millis(), nxt)) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||||
|
lcd_setstatus("Z-Offset Stopped", true);
|
||||||
|
|
||||||
|
while (G29_lcd_clicked()) idle();
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
delay(20); // We don't want any switch noise.
|
||||||
|
|
||||||
|
blm.state.z_offset = measured_z;
|
||||||
|
|
||||||
|
lcd_implementation_clear();
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
LEAVE:
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus(" ", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Find_Mean_Mesh_Height() {
|
||||||
|
int i, j, n;
|
||||||
|
float sum, sum_of_diff_squared, sigma, difference, mean;
|
||||||
|
|
||||||
|
sum = sum_of_diff_squared = 0.0;
|
||||||
|
n = 0;
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
if (!isnan(z_values[i][j])) {
|
||||||
|
sum += z_values[i][j];
|
||||||
|
n++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
mean = sum / n;
|
||||||
|
//
|
||||||
|
// Now do the sumation of the squares of difference from mean
|
||||||
|
//
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
if (!isnan(z_values[i][j])) {
|
||||||
|
difference = (z_values[i][j] - mean);
|
||||||
|
sum_of_diff_squared += difference * difference;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
SERIAL_ECHOLNPAIR("# of samples: ", n);
|
||||||
|
SERIAL_ECHOPGM("Mean Mesh Height: ");
|
||||||
|
SERIAL_PROTOCOL_F(mean, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
sigma = sqrt( sum_of_diff_squared / (n + 1));
|
||||||
|
SERIAL_ECHOPGM("Standard Deviation: ");
|
||||||
|
SERIAL_PROTOCOL_F(sigma, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
if (C_Flag)
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
|
||||||
|
if (!isnan(z_values[i][j]))
|
||||||
|
z_values[i][j] -= mean + Constant;
|
||||||
|
}
|
||||||
|
|
||||||
|
void Shift_Mesh_Height( ) {
|
||||||
|
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
|
||||||
|
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
|
||||||
|
if (!isnan(z_values[i][j]))
|
||||||
|
z_values[i][j] += Constant;
|
||||||
|
}
|
||||||
|
|
||||||
|
// probe_entire_mesh(X_Pos, Y_Pos) probes all invalidated locations of the mesh that can be reached
|
||||||
|
// by the probe. It attempts to fill in locations closest to the nozzle's start location first.
|
||||||
|
|
||||||
|
void probe_entire_mesh(float X_Pos, float Y_Pos, bool do_UBL_MESH_Map, bool stow_probe) {
|
||||||
|
mesh_index_pair location;
|
||||||
|
float xProbe, yProbe, measured_z;
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||||
|
DEPLOY_PROBE();
|
||||||
|
|
||||||
|
do {
|
||||||
|
if (G29_lcd_clicked()) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
|
||||||
|
lcd_quick_feedback();
|
||||||
|
while (G29_lcd_clicked()) idle();
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
STOW_PROBE();
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 1, NULL); // the '1' says we want the location to be relative to the probe
|
||||||
|
if (location.x_index>=0 && location.y_index>=0) {
|
||||||
|
xProbe = blm.map_x_index_to_bed_location(location.x_index);
|
||||||
|
yProbe = blm.map_y_index_to_bed_location(location.y_index);
|
||||||
|
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
measured_z = probe_pt(xProbe, yProbe, stow_probe, G29_Verbose_Level);
|
||||||
|
z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (do_UBL_MESH_Map) blm.display_map(1);
|
||||||
|
} while (location.x_index >= 0 && location.y_index >= 0);
|
||||||
|
|
||||||
|
LEAVE:
|
||||||
|
STOW_PROBE();
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
|
||||||
|
X_Pos = constrain( X_Pos-X_PROBE_OFFSET_FROM_EXTRUDER, X_MIN_POS, X_MAX_POS);
|
||||||
|
Y_Pos = constrain( Y_Pos-Y_PROBE_OFFSET_FROM_EXTRUDER, Y_MIN_POS, Y_MAX_POS);
|
||||||
|
|
||||||
|
do_blocking_move_to_xy(X_Pos, Y_Pos);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) {
|
||||||
|
struct vector v1, v2, normal;
|
||||||
|
float c, d, t;
|
||||||
|
int i, j;
|
||||||
|
|
||||||
|
v1.dx = (ubl_3_point_1_X - ubl_3_point_2_X);
|
||||||
|
v1.dy = (ubl_3_point_1_Y - ubl_3_point_2_Y);
|
||||||
|
v1.dz = (pt1 - pt2);
|
||||||
|
|
||||||
|
v2.dx = (ubl_3_point_3_X - ubl_3_point_2_X);
|
||||||
|
v2.dy = (ubl_3_point_3_Y - ubl_3_point_2_Y);
|
||||||
|
v2.dz = (pt3 - pt2);
|
||||||
|
|
||||||
|
// do cross product
|
||||||
|
|
||||||
|
normal.dx = v1.dy * v2.dz - v1.dz * v2.dy;
|
||||||
|
normal.dy = v1.dz * v2.dx - v1.dx * v2.dz;
|
||||||
|
normal.dz = v1.dx * v2.dy - v1.dy * v2.dx;
|
||||||
|
|
||||||
|
// printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz);
|
||||||
|
|
||||||
|
normal.dx /= normal.dz; // This code does two things. This vector is normal to the tilted plane.
|
||||||
|
normal.dy /= normal.dz; // However, we don't know its direction. We need it to point up. So if
|
||||||
|
normal.dz /= normal.dz; // Z is negative, we need to invert the sign of all components of the vector
|
||||||
|
// We also need Z to be unity because we are going to be treating this triangle
|
||||||
|
// as the sin() and cos() of the bed's tilt
|
||||||
|
|
||||||
|
//
|
||||||
|
// All of 3 of these points should give us the same d constant
|
||||||
|
//
|
||||||
|
t = normal.dx * ubl_3_point_1_X + normal.dy * ubl_3_point_1_Y;
|
||||||
|
d = t + normal.dz * pt1;
|
||||||
|
c = d - t;
|
||||||
|
SERIAL_ECHOPGM("d from 1st point: ");
|
||||||
|
SERIAL_PROTOCOL_F(d, 6);
|
||||||
|
SERIAL_ECHOPGM(" c: ");
|
||||||
|
SERIAL_PROTOCOL_F(c, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y;
|
||||||
|
d = t + normal.dz * pt2;
|
||||||
|
c = d - t;
|
||||||
|
SERIAL_ECHOPGM("d from 2nd point: ");
|
||||||
|
SERIAL_PROTOCOL_F(d, 6);
|
||||||
|
SERIAL_ECHOPGM(" c: ");
|
||||||
|
SERIAL_PROTOCOL_F(c, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y;
|
||||||
|
d = t + normal.dz * pt3;
|
||||||
|
c = d - t;
|
||||||
|
SERIAL_ECHOPGM("d from 3rd point: ");
|
||||||
|
SERIAL_PROTOCOL_F(d, 6);
|
||||||
|
SERIAL_ECHOPGM(" c: ");
|
||||||
|
SERIAL_PROTOCOL_F(c, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
c = -((normal.dx * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.dy * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
|
||||||
|
z_values[i][j] += c;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return normal;
|
||||||
|
}
|
||||||
|
|
||||||
|
float use_encoder_wheel_to_measure_point() {
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
||||||
|
idle();
|
||||||
|
if (G29_encoderDiff != 0) {
|
||||||
|
float new_z;
|
||||||
|
// We define a new variable so we can know ahead of time where we are trying to go.
|
||||||
|
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
|
||||||
|
// is complete. (So the dial feels responsive to user)
|
||||||
|
new_z = current_position[Z_AXIS] + 0.01 * float(G29_encoderDiff);
|
||||||
|
G29_encoderDiff = 0;
|
||||||
|
do_blocking_move_to_z(new_z);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
while (G29_lcd_clicked()) idle(); // debounce and wait
|
||||||
|
UBL_has_control_of_LCD_Panel--;
|
||||||
|
return current_position[Z_AXIS];
|
||||||
|
}
|
||||||
|
|
||||||
|
float measure_business_card_thickness(float Height_Value) {
|
||||||
|
float Z1, Z2;
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
|
||||||
|
do_blocking_move_to_z(Height_Value);
|
||||||
|
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
|
||||||
|
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
|
||||||
|
|
||||||
|
Z1 = use_encoder_wheel_to_measure_point();
|
||||||
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
|
||||||
|
Z2 = use_encoder_wheel_to_measure_point();
|
||||||
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
||||||
|
|
||||||
|
if (G29_Verbose_Level > 1) {
|
||||||
|
SERIAL_ECHOPGM("Business Card is: ");
|
||||||
|
SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
|
||||||
|
SERIAL_PROTOCOLLNPGM("mm thick.");
|
||||||
|
}
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
return abs(Z1 - Z2);
|
||||||
|
}
|
||||||
|
|
||||||
|
void manually_probe_remaining_mesh(float X_Pos, float Y_Pos, float z_clearance, float card_thickness, bool do_UBL_MESH_Map) {
|
||||||
|
mesh_index_pair location;
|
||||||
|
float last_x, last_y, dx, dy,
|
||||||
|
xProbe, yProbe;
|
||||||
|
unsigned long cnt;
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
last_x = last_y = -9999.99;
|
||||||
|
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||||
|
do_blocking_move_to_z(z_clearance);
|
||||||
|
do_blocking_move_to_xy(X_Pos, Y_Pos);
|
||||||
|
|
||||||
|
do {
|
||||||
|
if (do_UBL_MESH_Map) blm.display_map(1);
|
||||||
|
|
||||||
|
location = find_closest_mesh_point_of_type(INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
|
||||||
|
// It doesn't matter if the probe can not reach the
|
||||||
|
// NAN location. This is a manual probe.
|
||||||
|
if (location.x_index < 0 && location.y_index < 0) continue;
|
||||||
|
|
||||||
|
xProbe = blm.map_x_index_to_bed_location(location.x_index);
|
||||||
|
yProbe = blm.map_y_index_to_bed_location(location.y_index);
|
||||||
|
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
goto LEAVE;
|
||||||
|
}
|
||||||
|
|
||||||
|
dx = xProbe - last_x;
|
||||||
|
dy = yProbe - last_y;
|
||||||
|
|
||||||
|
if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
|
||||||
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
||||||
|
else
|
||||||
|
do_blocking_move_to_z(z_clearance);
|
||||||
|
|
||||||
|
last_x = xProbe;
|
||||||
|
last_y = yProbe;
|
||||||
|
do_blocking_move_to_xy(xProbe, yProbe);
|
||||||
|
|
||||||
|
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
||||||
|
idle();
|
||||||
|
if (G29_encoderDiff) {
|
||||||
|
float new_z;
|
||||||
|
// We define a new variable so we can know ahead of time where we are trying to go.
|
||||||
|
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
|
||||||
|
// is complete. (So the dial feels responsive to user)
|
||||||
|
new_z = current_position[Z_AXIS] + float(G29_encoderDiff) / 100.0;
|
||||||
|
G29_encoderDiff = 0;
|
||||||
|
do_blocking_move_to_z(new_z);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
cnt = millis();
|
||||||
|
while (G29_lcd_clicked()) { // debounce and watch for abort
|
||||||
|
idle();
|
||||||
|
if (millis() - cnt > 1500L) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
while (G29_lcd_clicked()) idle();
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
|
||||||
|
if (G29_Verbose_Level > 2) {
|
||||||
|
SERIAL_PROTOCOL("Mesh Point Measured at: ");
|
||||||
|
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
} while (location.x_index >= 0 && location.y_index >= 0);
|
||||||
|
|
||||||
|
if (do_UBL_MESH_Map) blm.display_map(1);
|
||||||
|
|
||||||
|
LEAVE:
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||||
|
do_blocking_move_to_xy(X_Pos, Y_Pos);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool G29_Parameter_Parsing() {
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus("Doing G29 UBL !", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
X_Pos = current_position[X_AXIS];
|
||||||
|
Y_Pos = current_position[Y_AXIS];
|
||||||
|
X_Flag = Y_Flag = Repeat_Flag = UBL_OK;
|
||||||
|
Constant = 0.0;
|
||||||
|
Repetition_Cnt = 1;
|
||||||
|
|
||||||
|
if ((X_Flag = code_seen('X'))) {
|
||||||
|
X_Pos = code_value_float();
|
||||||
|
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((Y_Flag = code_seen('Y'))) {
|
||||||
|
Y_Pos = code_value_float();
|
||||||
|
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (X_Flag != Y_Flag) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
|
||||||
|
G29_Verbose_Level = 0;
|
||||||
|
if (code_seen('V')) {
|
||||||
|
G29_Verbose_Level = code_value_int();
|
||||||
|
if (G29_Verbose_Level < 0 || G29_Verbose_Level > 4) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('A')) { // Activate the Unified Bed Leveling System
|
||||||
|
blm.state.active = 1;
|
||||||
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
|
||||||
|
blm.store_state();
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((C_Flag = code_seen('C')) && code_has_value())
|
||||||
|
Constant = code_value_float();
|
||||||
|
|
||||||
|
if (code_seen('D')) { // Disable the Unified Bed Leveling System
|
||||||
|
blm.state.active = 0;
|
||||||
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
|
||||||
|
blm.store_state();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (code_seen('F')) {
|
||||||
|
blm.state.G29_Correction_Fade_Height = 10.00;
|
||||||
|
if (code_has_value()) {
|
||||||
|
blm.state.G29_Correction_Fade_Height = code_value_float();
|
||||||
|
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
|
||||||
|
}
|
||||||
|
if (blm.state.G29_Correction_Fade_Height<0.0 || blm.state.G29_Correction_Fade_Height>100.0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausable.\n");
|
||||||
|
blm.state.G29_Correction_Fade_Height = 10.00;
|
||||||
|
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((Repeat_Flag = code_seen('R'))) {
|
||||||
|
Repetition_Cnt = code_has_value() ? code_value_int() : 9999;
|
||||||
|
if (Repetition_Cnt < 1) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
|
||||||
|
return UBL_ERR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return UBL_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This function goes away after G29 debug is complete. But for right now, it is a handy
|
||||||
|
* routine to dump binary data structures.
|
||||||
|
*/
|
||||||
|
void dump(char *str, float f) {
|
||||||
|
char *ptr;
|
||||||
|
|
||||||
|
SERIAL_PROTOCOL(str);
|
||||||
|
SERIAL_PROTOCOL_F(f, 8);
|
||||||
|
SERIAL_PROTOCOL(" ");
|
||||||
|
ptr = (char *)&f;
|
||||||
|
for (uint8_t i = 0; i < 4; i++) {
|
||||||
|
SERIAL_PROTOCOL(" ");
|
||||||
|
prt_hex_byte(*ptr++);
|
||||||
|
}
|
||||||
|
SERIAL_PROTOCOL(" isnan()=");
|
||||||
|
SERIAL_PROTOCOL(isnan(f));
|
||||||
|
SERIAL_PROTOCOL(" isinf()=");
|
||||||
|
SERIAL_PROTOCOL(isinf(f));
|
||||||
|
|
||||||
|
constexpr float g = INFINITY;
|
||||||
|
if (f == -g)
|
||||||
|
SERIAL_PROTOCOL(" Minus Infinity detected.");
|
||||||
|
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int UBL_state_at_invokation = 0,
|
||||||
|
UBL_state_recursion_chk = 0;
|
||||||
|
|
||||||
|
void save_UBL_active_state_and_disable() {
|
||||||
|
UBL_state_recursion_chk++;
|
||||||
|
if (UBL_state_recursion_chk != 1) {
|
||||||
|
SERIAL_ECHOLNPGM("save_UBL_active_state_and_disabled() called multiple times in a row.");
|
||||||
|
lcd_setstatus("save_UBL_active() error", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
UBL_state_at_invokation = blm.state.active;
|
||||||
|
blm.state.active = 0;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void restore_UBL_active_state_and_leave() {
|
||||||
|
if (--UBL_state_recursion_chk) {
|
||||||
|
SERIAL_ECHOLNPGM("restore_UBL_active_state_and_leave() called too many times.");
|
||||||
|
lcd_setstatus("restore_UBL_active() error", true);
|
||||||
|
lcd_quick_feedback();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
blm.state.active = UBL_state_at_invokation;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
||||||
|
* good to have the extra information. Soon... we prune this to just a few items
|
||||||
|
*/
|
||||||
|
void G29_What_Command() {
|
||||||
|
int k, i;
|
||||||
|
k = E2END - Unified_Bed_Leveling_EEPROM_start;
|
||||||
|
Statistics_Flag++;
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("Version #4: 10/30/2016 branch \n");
|
||||||
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling System ");
|
||||||
|
if (blm.state.active)
|
||||||
|
SERIAL_PROTOCOLPGM("Active.");
|
||||||
|
else
|
||||||
|
SERIAL_PROTOCOLPGM("Inactive.");
|
||||||
|
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
|
||||||
|
|
||||||
|
if (blm.state.EEPROM_storage_slot == 0xFFFF) {
|
||||||
|
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
|
||||||
|
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
|
||||||
|
// find this info buried in the clutter
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
SERIAL_PROTOCOLPGM("Mesh: ");
|
||||||
|
prt_hex_word(blm.state.EEPROM_storage_slot);
|
||||||
|
SERIAL_PROTOCOLPGM(" Loaded. ");
|
||||||
|
SERIAL_PROTOCOLLNPGM(" -------------------------------------------------------- <----<<<"); // These arrows are just to help me
|
||||||
|
// find this info buried in the clutter
|
||||||
|
}
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("\nG29_Correction_Fade_Height : ", blm.state.G29_Correction_Fade_Height );
|
||||||
|
SERIAL_PROTOCOLPGM(" ------------------------------------- <----<<< \n"); // These arrows are just to help me
|
||||||
|
// find this info buried in the clutter
|
||||||
|
idle();
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM("z_offset: ");
|
||||||
|
SERIAL_PROTOCOL_F(blm.state.z_offset, 6);
|
||||||
|
SERIAL_PROTOCOLLNPGM(" ------------------------------------------------------------ <----<<<");
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
SERIAL_PROTOCOL_F( blm.map_x_index_to_bed_location(i), 1);
|
||||||
|
SERIAL_PROTOCOLPGM(" ");
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
|
||||||
|
SERIAL_PROTOCOL_F( blm.map_y_index_to_bed_location(i), 1);
|
||||||
|
SERIAL_PROTOCOLPGM(" ");
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
#if HAS_KILL
|
||||||
|
SERIAL_ECHOPAIR("Kill pin on :", KILL_PIN);
|
||||||
|
SERIAL_ECHOLNPAIR(" state:", READ(KILL_PIN));
|
||||||
|
#endif
|
||||||
|
|
||||||
|
SERIAL_ECHOLNPAIR("UBL_state_at_invokation :", UBL_state_at_invokation);
|
||||||
|
SERIAL_ECHOLNPAIR("UBL_state_recursion_chk :", UBL_state_recursion_chk);
|
||||||
|
|
||||||
|
SERIAL_EOL;
|
||||||
|
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
|
||||||
|
prt_hex_word(Unified_Bed_Leveling_EEPROM_start);
|
||||||
|
SERIAL_EOL;
|
||||||
|
idle();
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("end of EEPROM : ");
|
||||||
|
prt_hex_word(E2END);
|
||||||
|
SERIAL_EOL;
|
||||||
|
idle();
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLLNPAIR("sizeof(blm) : ", (int)sizeof(blm));
|
||||||
|
SERIAL_EOL;
|
||||||
|
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
|
||||||
|
prt_hex_word(k);
|
||||||
|
SERIAL_EOL;
|
||||||
|
idle();
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
|
||||||
|
prt_hex_word(k / sizeof(z_values));
|
||||||
|
SERIAL_PROTOCOLPGM(" meshes. \n");
|
||||||
|
|
||||||
|
SERIAL_PROTOCOLPGM("sizeof(stat) :");
|
||||||
|
prt_hex_word(sizeof(blm.state));
|
||||||
|
SERIAL_EOL;
|
||||||
|
idle();
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
|
||||||
|
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
|
||||||
|
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
|
||||||
|
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
|
||||||
|
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
|
||||||
|
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
|
||||||
|
SERIAL_ECHOPGM("\nMESH_X_DIST ");
|
||||||
|
SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
|
||||||
|
SERIAL_ECHOPGM("\nMESH_Y_DIST ");
|
||||||
|
SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
|
||||||
|
SERIAL_EOL;
|
||||||
|
idle();
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(block_t): ", (int)sizeof(block_t));
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer));
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(char): ", (int)sizeof(char));
|
||||||
|
SERIAL_ECHOPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char));
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(int): ", (int)sizeof(int));
|
||||||
|
SERIAL_ECHOPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int));
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(long): ", (int)sizeof(long));
|
||||||
|
SERIAL_ECHOPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int));
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(float): ", (int)sizeof(float));
|
||||||
|
SERIAL_ECHOPAIR(" sizeof(double): ", (int)sizeof(double));
|
||||||
|
SERIAL_ECHOPAIR("\nsizeof(void *): ", (int)sizeof(void *));
|
||||||
|
struct pf { void *p_f(); } ptr_func;
|
||||||
|
SERIAL_ECHOPAIR(" sizeof(struct pf): ", (int)sizeof(pf));
|
||||||
|
SERIAL_ECHOPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func));
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
idle();
|
||||||
|
|
||||||
|
if (!blm.sanity_check())
|
||||||
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* When we are fully debugged, the EEPROM dump command will get deleted also. But
|
||||||
|
* right now, it is good to have the extra information. Soon... we prune this.
|
||||||
|
*/
|
||||||
|
void G29_EEPROM_Dump() {
|
||||||
|
unsigned char cccc;
|
||||||
|
int i, j, kkkk;
|
||||||
|
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOPGM("EEPROM Dump:\n");
|
||||||
|
for (i = 0; i < E2END + 1; i += 16) {
|
||||||
|
if (i & 0x3 == 0) idle();
|
||||||
|
prt_hex_word(i);
|
||||||
|
SERIAL_ECHOPGM(": ");
|
||||||
|
for (j = 0; j < 16; j++) {
|
||||||
|
kkkk = i + j;
|
||||||
|
eeprom_read_block(&cccc, (void *)kkkk, 1);
|
||||||
|
prt_hex_byte(cccc);
|
||||||
|
SERIAL_ECHO(' ');
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
SERIAL_EOL;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* When we are fully debugged, this may go away. But there are some valid
|
||||||
|
* use cases for the users. So we can wait and see what to do with it.
|
||||||
|
*/
|
||||||
|
void G29_Kompare_Current_Mesh_to_Stored_Mesh() {
|
||||||
|
float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
|
||||||
|
int i, j, k;
|
||||||
|
|
||||||
|
if (!code_has_value()) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
Storage_Slot = code_value_int();
|
||||||
|
|
||||||
|
k = E2END - sizeof(blm.state);
|
||||||
|
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(tmp_z_values);
|
||||||
|
|
||||||
|
if (Storage_Slot < 0 || Storage_Slot > j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||||
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
j = k - (Storage_Slot + 1) * sizeof(tmp_z_values);
|
||||||
|
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
|
||||||
|
|
||||||
|
SERIAL_ECHOPAIR("Subtracting Mesh ", Storage_Slot);
|
||||||
|
SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
|
||||||
|
prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
|
||||||
|
SERIAL_EOL;
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
|
||||||
|
z_values[i][j] = z_values[i][j] - tmp_z_values[i][j];
|
||||||
|
}
|
||||||
|
|
||||||
|
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) {
|
||||||
|
int i, j;
|
||||||
|
float f, px, py, mx, my, dx, dy, closest = 99999.99;
|
||||||
|
float current_x, current_y, distance;
|
||||||
|
mesh_index_pair return_val;
|
||||||
|
|
||||||
|
return_val.x_index = return_val.y_index = -1;
|
||||||
|
|
||||||
|
current_x = current_position[X_AXIS];
|
||||||
|
current_y = current_position[Y_AXIS];
|
||||||
|
|
||||||
|
px = X; // Get our reference position. Either the nozzle or
|
||||||
|
py = Y; // the probe location.
|
||||||
|
if (probe_as_reference) {
|
||||||
|
px -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
py -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||||
|
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||||
|
|
||||||
|
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|
||||||
|
|| (type == REAL && !isnan(z_values[i][j]))
|
||||||
|
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
|
||||||
|
) {
|
||||||
|
|
||||||
|
// We only get here if we found a Mesh Point of the specified type
|
||||||
|
|
||||||
|
mx = blm.map_x_index_to_bed_location(i); // Check if we can probe this mesh location
|
||||||
|
my = blm.map_y_index_to_bed_location(j);
|
||||||
|
|
||||||
|
// If we are using the probe as the reference
|
||||||
|
// there are some locations we can't get to.
|
||||||
|
// We prune these out of the list and ignore
|
||||||
|
// them until the next Phase where we do the
|
||||||
|
// manual nozzle probing.
|
||||||
|
if (probe_as_reference
|
||||||
|
&& (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X))
|
||||||
|
&& (my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y))
|
||||||
|
) continue;
|
||||||
|
|
||||||
|
dx = px - mx; // We can get to it. Let's see if it is the
|
||||||
|
dy = py - my; // closest location to the nozzle.
|
||||||
|
distance = HYPOT(dx, dy);
|
||||||
|
|
||||||
|
dx = current_x - mx; // We are going to add in a weighting factor that considers
|
||||||
|
dy = current_y - my; // the current location of the nozzle. If two locations are equal
|
||||||
|
distance += HYPOT(dx, dy) * 0.01; // distance from the measurement location, we are going to give
|
||||||
|
|
||||||
|
if (distance < closest) {
|
||||||
|
closest = distance; // We found a closer location with
|
||||||
|
return_val.x_index = i; // the specified type of mesh value.
|
||||||
|
return_val.y_index = j;
|
||||||
|
return_val.distance = closest;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return return_val;
|
||||||
|
}
|
||||||
|
|
||||||
|
void fine_tune_mesh(float X_Pos, float Y_Pos, float Height_Value, bool do_UBL_MESH_Map) {
|
||||||
|
mesh_index_pair location;
|
||||||
|
float xProbe, yProbe, new_z;
|
||||||
|
uint16_t i, not_done[16];
|
||||||
|
long round_off;
|
||||||
|
|
||||||
|
save_UBL_active_state_and_disable();
|
||||||
|
memset(not_done, 0xFF, sizeof(not_done));
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus("Fine Tuning Mesh.", true);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||||
|
do_blocking_move_to_xy(X_Pos, Y_Pos);
|
||||||
|
do {
|
||||||
|
if (do_UBL_MESH_Map) blm.display_map(1);
|
||||||
|
|
||||||
|
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, X_Pos, Y_Pos, 0, not_done); // The '0' says we want to use the nozzle's position
|
||||||
|
// It doesn't matter if the probe can not reach this
|
||||||
|
// location. This is a manual edit of the Mesh Point.
|
||||||
|
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
|
||||||
|
|
||||||
|
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
||||||
|
// different location the next time through the loop
|
||||||
|
|
||||||
|
xProbe = blm.map_x_index_to_bed_location(location.x_index);
|
||||||
|
yProbe = blm.map_y_index_to_bed_location(location.y_index);
|
||||||
|
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
|
||||||
|
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
|
||||||
|
UBL_has_control_of_LCD_Panel = 0; // Let's do the check.
|
||||||
|
goto FINE_TUNE_EXIT;
|
||||||
|
}
|
||||||
|
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
||||||
|
do_blocking_move_to_xy(xProbe, yProbe);
|
||||||
|
new_z = z_values[location.x_index][location.y_index] + 0.001;
|
||||||
|
|
||||||
|
round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the
|
||||||
|
round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place.
|
||||||
|
new_z = ((float)(round_off)) / 1000.0;
|
||||||
|
|
||||||
|
//SERIAL_ECHOPGM("Mesh Point Currently At: ");
|
||||||
|
//SERIAL_PROTOCOL_F(new_z, 6);
|
||||||
|
//SERIAL_EOL;
|
||||||
|
|
||||||
|
lcd_implementation_clear();
|
||||||
|
lcd_mesh_edit_setup(new_z);
|
||||||
|
UBL_has_control_of_LCD_Panel++;
|
||||||
|
do {
|
||||||
|
new_z = lcd_mesh_edit();
|
||||||
|
idle();
|
||||||
|
} while (!G29_lcd_clicked());
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
|
||||||
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
|
||||||
|
// or here.
|
||||||
|
millis_t nxt = millis() + 1500UL;
|
||||||
|
lcd_return_to_status();
|
||||||
|
while (G29_lcd_clicked()) { // debounce and watch for abort
|
||||||
|
idle();
|
||||||
|
if (ELAPSED(millis(), nxt)) {
|
||||||
|
lcd_return_to_status();
|
||||||
|
SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||||
|
lcd_setstatus("Mesh Editing Stopped", true);
|
||||||
|
|
||||||
|
while (G29_lcd_clicked()) idle();
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
goto FINE_TUNE_EXIT;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
delay(20); // We don't want any switch noise.
|
||||||
|
|
||||||
|
z_values[location.x_index][location.y_index] = new_z;
|
||||||
|
|
||||||
|
lcd_implementation_clear();
|
||||||
|
|
||||||
|
} while (location.x_index >= 0 && location.y_index >= 0 && --Repetition_Cnt);
|
||||||
|
|
||||||
|
FINE_TUNE_EXIT:
|
||||||
|
|
||||||
|
if (do_UBL_MESH_Map) blm.display_map(1);
|
||||||
|
restore_UBL_active_state_and_leave();
|
||||||
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||||
|
|
||||||
|
do_blocking_move_to_xy(X_Pos, Y_Pos);
|
||||||
|
|
||||||
|
UBL_has_control_of_LCD_Panel = 0;
|
||||||
|
|
||||||
|
#if ENABLED(ULTRA_LCD)
|
||||||
|
lcd_setstatus("Done Editing Mesh", true);
|
||||||
|
#endif
|
||||||
|
SERIAL_ECHOLNPGM("Done Editing Mesh.");
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL
|
@ -0,0 +1,553 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
#include "Marlin.h"
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||||
|
|
||||||
|
#include "UBL.h"
|
||||||
|
#include "planner.h"
|
||||||
|
#include <avr/io.h>
|
||||||
|
#include <math.h>
|
||||||
|
|
||||||
|
extern void set_current_to_destination();
|
||||||
|
extern bool G26_Debug_flag;
|
||||||
|
void debug_current_and_destination(char *title);
|
||||||
|
|
||||||
|
void wait_for_button_press();
|
||||||
|
|
||||||
|
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
|
||||||
|
|
||||||
|
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi;
|
||||||
|
int left_flag, down_flag;
|
||||||
|
int current_xi, current_yi;
|
||||||
|
int dxi, dyi, xi_cnt, yi_cnt;
|
||||||
|
bool use_X_dist, inf_normalized_flag, inf_m_flag;
|
||||||
|
float x_start, y_start;
|
||||||
|
float x, y, z1, z2, z0 /*, z_optimized */;
|
||||||
|
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
|
||||||
|
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
|
||||||
|
float dx, dy, adx, ady, m, c;
|
||||||
|
|
||||||
|
//
|
||||||
|
// Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||||
|
// as possible to determine if this is the case. If this move is within the same cell, we will
|
||||||
|
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
||||||
|
//
|
||||||
|
|
||||||
|
x_start = current_position[X_AXIS];
|
||||||
|
y_start = current_position[Y_AXIS];
|
||||||
|
z_start = current_position[Z_AXIS];
|
||||||
|
e_start = current_position[E_AXIS];
|
||||||
|
|
||||||
|
cell_start_xi = blm.get_cell_index_x(x_start);
|
||||||
|
cell_start_yi = blm.get_cell_index_y(y_start);
|
||||||
|
cell_dest_xi = blm.get_cell_index_x(x_end);
|
||||||
|
cell_dest_yi = blm.get_cell_index_y(y_end);
|
||||||
|
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
SERIAL_ECHOPGM(" UBL_line_to_destination(xe=");
|
||||||
|
SERIAL_ECHO(x_end);
|
||||||
|
SERIAL_ECHOPGM(",ye=");
|
||||||
|
SERIAL_ECHO(y_end);
|
||||||
|
SERIAL_ECHOPGM(",ze=");
|
||||||
|
SERIAL_ECHO(z_end);
|
||||||
|
SERIAL_ECHOPGM(",ee=");
|
||||||
|
SERIAL_ECHO(e_end);
|
||||||
|
SERIAL_ECHOPGM(")\n");
|
||||||
|
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
|
||||||
|
// we don't need to break up the move
|
||||||
|
//
|
||||||
|
// If we are moving off the print bed, we are going to allow the move at this level.
|
||||||
|
// But we detect it and isolate it. For now, we just pass along the request.
|
||||||
|
//
|
||||||
|
|
||||||
|
if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||||
|
|
||||||
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
||||||
|
// a reasonable correction would be.
|
||||||
|
|
||||||
|
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder);
|
||||||
|
set_current_to_destination();
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
||||||
|
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
||||||
|
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
||||||
|
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
||||||
|
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
||||||
|
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||||
|
|
||||||
|
FINAL_MOVE:
|
||||||
|
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
|
||||||
|
|
||||||
|
z1 = z_values[cell_dest_xi][cell_dest_yi] +
|
||||||
|
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1;
|
||||||
|
|
||||||
|
z2 = z_values[cell_dest_xi][cell_dest_yi+1] +
|
||||||
|
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
|
||||||
|
|
||||||
|
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||||
|
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||||
|
|
||||||
|
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST);
|
||||||
|
|
||||||
|
z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
|
||||||
|
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( x_end, y_end);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" x_end=", x_end);
|
||||||
|
SERIAL_ECHOPAIR(" y_end=", y_end);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
||||||
|
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
||||||
|
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
||||||
|
// computation and in fact most lines are of this nature. We will check for that in the following
|
||||||
|
// blocks of code:
|
||||||
|
|
||||||
|
left_flag = 0;
|
||||||
|
down_flag = 0;
|
||||||
|
inf_m_flag = false;
|
||||||
|
inf_normalized_flag = false;
|
||||||
|
|
||||||
|
dx = x_end - x_start;
|
||||||
|
dy = y_end - y_start;
|
||||||
|
|
||||||
|
if (dx<0.0) { // figure out which way we need to move to get to the next cell
|
||||||
|
dxi = -1;
|
||||||
|
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
|
||||||
|
}
|
||||||
|
else { // We may as well generate the appropriate values for adx and ady right now
|
||||||
|
dxi = 1; // to save setting up the abs() function call and actually doing the call.
|
||||||
|
adx = dx;
|
||||||
|
}
|
||||||
|
if (dy<0.0) {
|
||||||
|
dyi = -1;
|
||||||
|
ady = -dy; // absolute value of dy
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
dyi = 1;
|
||||||
|
ady = dy;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dx<0.0) left_flag = 1;
|
||||||
|
if (dy<0.0) down_flag = 1;
|
||||||
|
if (cell_start_xi == cell_dest_xi) dxi = 0;
|
||||||
|
if (cell_start_yi == cell_dest_yi) dyi = 0;
|
||||||
|
|
||||||
|
//
|
||||||
|
// Compute the scaling factor for the extruder for each partial move.
|
||||||
|
// We need to watch out for zero length moves because it will cause us to
|
||||||
|
// have an infinate scaling factor. We are stuck doing a floating point
|
||||||
|
// divide to get our scaling factor, but after that, we just multiply by this
|
||||||
|
// number. We also pick our scaling factor based on whether the X or Y
|
||||||
|
// component is larger. We use the biggest of the two to preserve precision.
|
||||||
|
//
|
||||||
|
if ( adx > ady ) {
|
||||||
|
use_X_dist = true;
|
||||||
|
on_axis_distance = x_end-x_start;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
use_X_dist = false;
|
||||||
|
on_axis_distance = y_end-y_start;
|
||||||
|
}
|
||||||
|
e_position = e_end - e_start;
|
||||||
|
e_normalized_dist = e_position / on_axis_distance;
|
||||||
|
|
||||||
|
z_position = z_end - z_start;
|
||||||
|
z_normalized_dist = z_position / on_axis_distance;
|
||||||
|
|
||||||
|
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) {
|
||||||
|
inf_normalized_flag = true;
|
||||||
|
}
|
||||||
|
current_xi = cell_start_xi;
|
||||||
|
current_yi = cell_start_yi;
|
||||||
|
|
||||||
|
m = dy / dx;
|
||||||
|
c = y_start - m*x_start;
|
||||||
|
if (m == INFINITY || m == -INFINITY) {
|
||||||
|
inf_m_flag = true;
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// This block handles vertical lines. These are lines that stay within the same
|
||||||
|
// X Cell column. They do not need to be perfectly vertical. They just can
|
||||||
|
// not cross into another X Cell column.
|
||||||
|
//
|
||||||
|
if (dxi == 0) { // Check for a vertical line
|
||||||
|
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
||||||
|
while (current_yi != cell_dest_yi + down_flag) {
|
||||||
|
current_yi += dyi;
|
||||||
|
next_mesh_line_y = mesh_index_to_Y_location[current_yi];
|
||||||
|
if (inf_m_flag) {
|
||||||
|
x = x_start; // if the slope of the line is infinite, we won't do the calculations
|
||||||
|
}
|
||||||
|
// we know the next X is the same so we can recover and continue!
|
||||||
|
else {
|
||||||
|
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
||||||
|
}
|
||||||
|
|
||||||
|
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( x, next_mesh_line_y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "VERTICAL z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" x=", x);
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
y = mesh_index_to_Y_location[current_yi];
|
||||||
|
|
||||||
|
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
||||||
|
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
||||||
|
// happens, it might be best to remove the check and always 'schedule' the move because
|
||||||
|
// the planner.buffer_line() routine will filter it if that happens.
|
||||||
|
if ( y!=y_start) {
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
on_axis_distance = y - y_start; // we don't need to check if the extruder position
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
} //else printf("FIRST MOVE PRUNED ");
|
||||||
|
}
|
||||||
|
//
|
||||||
|
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
||||||
|
//
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
|
||||||
|
goto FINAL_MOVE;
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// This block handles horizontal lines. These are lines that stay within the same
|
||||||
|
// Y Cell row. They do not need to be perfectly horizontal. They just can
|
||||||
|
// not cross into another Y Cell row.
|
||||||
|
//
|
||||||
|
|
||||||
|
if (dyi == 0) { // Check for a horiziontal line
|
||||||
|
current_xi += left_flag; // Line is heading left, we just want to go to the left
|
||||||
|
// edge of this cell for the first move.
|
||||||
|
while (current_xi != cell_dest_xi + left_flag) {
|
||||||
|
current_xi += dxi;
|
||||||
|
next_mesh_line_x = mesh_index_to_X_location[current_xi];
|
||||||
|
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
||||||
|
|
||||||
|
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( next_mesh_line_x, y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "HORIZONTAL z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
|
||||||
|
SERIAL_ECHOPAIR(" y=", y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
x = mesh_index_to_X_location[current_xi];
|
||||||
|
|
||||||
|
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
||||||
|
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
||||||
|
// that happens, it might be best to remove the check and always 'schedule' the move because
|
||||||
|
// the planner.buffer_line() routine will filter it if that happens.
|
||||||
|
if ( x!=x_start) {
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
on_axis_distance = x - x_start; // we don't need to check if the extruder position
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
} //else printf("FIRST MOVE PRUNED ");
|
||||||
|
}
|
||||||
|
if (G26_Debug_flag!=0) {
|
||||||
|
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
|
||||||
|
goto FINAL_MOVE;
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// This block handles the generic case of a line crossing both X and Y
|
||||||
|
// Mesh lines.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
//
|
||||||
|
|
||||||
|
xi_cnt = cell_start_xi - cell_dest_xi;
|
||||||
|
if ( xi_cnt < 0 ) {
|
||||||
|
xi_cnt = -xi_cnt;
|
||||||
|
}
|
||||||
|
|
||||||
|
yi_cnt = cell_start_yi - cell_dest_yi;
|
||||||
|
if ( yi_cnt < 0 ) {
|
||||||
|
yi_cnt = -yi_cnt;
|
||||||
|
}
|
||||||
|
|
||||||
|
current_xi += left_flag;
|
||||||
|
current_yi += down_flag;
|
||||||
|
|
||||||
|
while ( xi_cnt>0 || yi_cnt>0 ) {
|
||||||
|
|
||||||
|
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi];
|
||||||
|
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi];
|
||||||
|
|
||||||
|
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||||
|
x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
||||||
|
// about m being equal to 0.0 If this was the case, we would have
|
||||||
|
// detected this as a vertical line move up above and we wouldn't
|
||||||
|
// be down here doing a generic type of move.
|
||||||
|
|
||||||
|
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first
|
||||||
|
//
|
||||||
|
// Yes! Crossing a Y Mesh Line next
|
||||||
|
//
|
||||||
|
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi);
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
|
||||||
|
/*
|
||||||
|
|
||||||
|
z_optimized = z0;
|
||||||
|
|
||||||
|
z0 = blm.get_z_correction( x, next_mesh_line_y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "General_1: z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); {
|
||||||
|
SERIAL_ECHOPAIR(" x=", x);
|
||||||
|
}
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
if ( use_X_dist ) {
|
||||||
|
on_axis_distance = x - x_start;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
on_axis_distance = next_mesh_line_y - y_start;
|
||||||
|
}
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
current_yi += dyi;
|
||||||
|
yi_cnt--;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
//
|
||||||
|
// Yes! Crossing a X Mesh Line next
|
||||||
|
//
|
||||||
|
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag);
|
||||||
|
|
||||||
|
|
||||||
|
//
|
||||||
|
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||||
|
// that the correct value is being passed to planner.buffer_line()
|
||||||
|
//
|
||||||
|
/*
|
||||||
|
z_optimized = z0;
|
||||||
|
z0 = blm.get_z_correction( next_mesh_line_x, y);
|
||||||
|
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
|
||||||
|
debug_current_and_destination( (char *) "General_2: z_correction()");
|
||||||
|
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
|
||||||
|
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
|
||||||
|
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
|
||||||
|
SERIAL_ECHOPAIR(" y=", y);
|
||||||
|
SERIAL_ECHOPAIR(" z0=", z0);
|
||||||
|
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
|
||||||
|
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||||
|
SERIAL_ECHO("\n");
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||||
|
|
||||||
|
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||||
|
z0 = 0.0; // in z_values[][] and propagate through the
|
||||||
|
// calculations. If our correction is NAN, we throw it out
|
||||||
|
// because part of the Mesh is undefined and we don't have the
|
||||||
|
// information we need to complete the height correction.
|
||||||
|
}
|
||||||
|
if ( inf_normalized_flag == false ) {
|
||||||
|
if ( use_X_dist ) {
|
||||||
|
on_axis_distance = next_mesh_line_x - x_start;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
on_axis_distance = y - y_start;
|
||||||
|
}
|
||||||
|
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||||
|
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
e_position = e_start;
|
||||||
|
z_position = z_start;
|
||||||
|
}
|
||||||
|
|
||||||
|
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||||
|
current_xi += dxi;
|
||||||
|
xi_cnt--;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (G26_Debug_flag) {
|
||||||
|
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()");
|
||||||
|
}
|
||||||
|
if (current_position[0] != x_end || current_position[1] != y_end) {
|
||||||
|
goto FINAL_MOVE;
|
||||||
|
}
|
||||||
|
set_current_to_destination();
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
void wait_for_button_press() {
|
||||||
|
// if ( !been_to_2_6 )
|
||||||
|
//return; // bob - I think this should be commented out
|
||||||
|
|
||||||
|
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
|
||||||
|
SET_OUTPUT(64);
|
||||||
|
while (READ(66) & 0x01) idle();
|
||||||
|
|
||||||
|
delay(50);
|
||||||
|
while (!(READ(66) & 0x01)) idle();
|
||||||
|
delay(50);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
|
@ -0,0 +1,47 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
#include "Marlin.h"
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
|
||||||
|
|
||||||
|
#include "hex_print_routines.h"
|
||||||
|
|
||||||
|
void prt_hex_nibble(uint8_t n) {
|
||||||
|
if (n <= 9)
|
||||||
|
SERIAL_ECHO(n);
|
||||||
|
else
|
||||||
|
SERIAL_ECHO((char)('A' + n - 10));
|
||||||
|
delay(3);
|
||||||
|
}
|
||||||
|
|
||||||
|
void prt_hex_byte(uint8_t b) {
|
||||||
|
prt_hex_nibble((b & 0xF0) >> 4);
|
||||||
|
prt_hex_nibble(b & 0x0F);
|
||||||
|
}
|
||||||
|
|
||||||
|
void prt_hex_word(uint16_t w) {
|
||||||
|
prt_hex_byte((w & 0xFF00) >> 8);
|
||||||
|
prt_hex_byte(w & 0x0FF);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER
|
@ -0,0 +1,33 @@
|
|||||||
|
/**
|
||||||
|
* Marlin 3D Printer Firmware
|
||||||
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||||
|
*
|
||||||
|
* Based on Sprinter and grbl.
|
||||||
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
*
|
||||||
|
* This program is free software: you can redistribute it and/or modify
|
||||||
|
* it under the terms of the GNU General Public License as published by
|
||||||
|
* the Free Software Foundation, either version 3 of the License, or
|
||||||
|
* (at your option) any later version.
|
||||||
|
*
|
||||||
|
* This program is distributed in the hope that it will be useful,
|
||||||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
* GNU General Public License for more details.
|
||||||
|
*
|
||||||
|
* You should have received a copy of the GNU General Public License
|
||||||
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef HEX_PRINT_ROUTINES_H
|
||||||
|
#define HEX_PRINT_ROUTINES_H
|
||||||
|
|
||||||
|
//
|
||||||
|
// 3 support routines to print hex numbers. We can print a nibble, byte and word
|
||||||
|
//
|
||||||
|
void prt_hex_nibble(uint8_t n);
|
||||||
|
void prt_hex_byte(uint8_t b);
|
||||||
|
void prt_hex_word(uint16_t w);
|
||||||
|
|
||||||
|
#endif // HEX_PRINT_ROUTINES_H
|
Loading…
Reference in new issue