|  |  |  | @ -688,35 +688,69 @@ void Planner::calculate_volumetric_multipliers() { | 
			
		
	
		
			
				
					|  |  |  |  | #endif // PLANNER_LEVELING
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | /**
 | 
			
		
	
		
			
				
					|  |  |  |  |  * Planner::_buffer_steps | 
			
		
	
		
			
				
					|  |  |  |  |  * Planner::_buffer_line | 
			
		
	
		
			
				
					|  |  |  |  |  * | 
			
		
	
		
			
				
					|  |  |  |  |  * Add a new linear movement to the buffer in axis units. | 
			
		
	
		
			
				
					|  |  |  |  |  * | 
			
		
	
		
			
				
					|  |  |  |  |  * Add a new linear movement to the buffer (in terms of steps). | 
			
		
	
		
			
				
					|  |  |  |  |  * Leveling and kinematics should be applied ahead of calling this. | 
			
		
	
		
			
				
					|  |  |  |  |  * | 
			
		
	
		
			
				
					|  |  |  |  |  *  target    - target position in steps units | 
			
		
	
		
			
				
					|  |  |  |  |  *  a,b,c,e   - target positions in mm and/or degrees | 
			
		
	
		
			
				
					|  |  |  |  |  *  fr_mm_s   - (target) speed of the move | 
			
		
	
		
			
				
					|  |  |  |  |  *  extruder  - target extruder | 
			
		
	
		
			
				
					|  |  |  |  |  */ | 
			
		
	
		
			
				
					|  |  |  |  | void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder) { | 
			
		
	
		
			
				
					|  |  |  |  | void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) { | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // The target position of the tool in absolute steps
 | 
			
		
	
		
			
				
					|  |  |  |  |   // Calculate target position in absolute steps
 | 
			
		
	
		
			
				
					|  |  |  |  |   //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | 
			
		
	
		
			
				
					|  |  |  |  |   const long target[XYZE] = { | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(a * axis_steps_per_mm[X_AXIS]), | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(b * axis_steps_per_mm[Y_AXIS]), | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(c * axis_steps_per_mm[Z_AXIS]), | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(e * axis_steps_per_mm[E_AXIS_N]) | 
			
		
	
		
			
				
					|  |  |  |  |   }; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // When changing extruders recalculate steps corresponding to the E position
 | 
			
		
	
		
			
				
					|  |  |  |  |   #if ENABLED(DISTINCT_E_FACTORS) | 
			
		
	
		
			
				
					|  |  |  |  |     if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { | 
			
		
	
		
			
				
					|  |  |  |  |       position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); | 
			
		
	
		
			
				
					|  |  |  |  |       last_extruder = extruder; | 
			
		
	
		
			
				
					|  |  |  |  |     } | 
			
		
	
		
			
				
					|  |  |  |  |   #endif | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   const int32_t da = target[X_AXIS] - position[X_AXIS], | 
			
		
	
		
			
				
					|  |  |  |  |                 db = target[Y_AXIS] - position[Y_AXIS], | 
			
		
	
		
			
				
					|  |  |  |  |                 dc = target[Z_AXIS] - position[Z_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   int32_t de = target[E_AXIS] - position[E_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   /* <-- add a slash to enable
 | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR("  _buffer_steps FR:", fr_mm_s); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" A:", target[A_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |   /*
 | 
			
		
	
		
			
				
					|  |  |  |  |   SERIAL_ECHOPAIR("  Planner FR:", fr_mm_s); | 
			
		
	
		
			
				
					|  |  |  |  |   SERIAL_CHAR(' '); | 
			
		
	
		
			
				
					|  |  |  |  |   #if IS_KINEMATIC | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR("A:", a); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" (", da); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(") B:", b); | 
			
		
	
		
			
				
					|  |  |  |  |   #else | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR("X:", a); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" (", da); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(") Y:", b); | 
			
		
	
		
			
				
					|  |  |  |  |   #endif | 
			
		
	
		
			
				
					|  |  |  |  |   SERIAL_ECHOPAIR(" (", db); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOLNPGM(" steps) C:", target[C_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |   #if ENABLED(DELTA) | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(") C:", c); | 
			
		
	
		
			
				
					|  |  |  |  |   #else | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(") Z:", c); | 
			
		
	
		
			
				
					|  |  |  |  |   #endif | 
			
		
	
		
			
				
					|  |  |  |  |   SERIAL_ECHOPAIR(" (", dc); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOLNPGM(" steps) E:", target[E_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" (", de); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOLNPGM(" steps)"); | 
			
		
	
		
			
				
					|  |  |  |  |   SERIAL_CHAR(')'); | 
			
		
	
		
			
				
					|  |  |  |  |   SERIAL_EOL(); | 
			
		
	
		
			
				
					|  |  |  |  |   //*/
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
 | 
			
		
	
		
			
				
					|  |  |  |  |   if (DEBUGGING(DRYRUN)) | 
			
		
	
		
			
				
					|  |  |  |  |     position[E_AXIS] = target[E_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   int32_t de = target[E_AXIS] - position[E_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) | 
			
		
	
		
			
				
					|  |  |  |  |     if (de) { | 
			
		
	
		
			
				
					|  |  |  |  |       #if ENABLED(PREVENT_COLD_EXTRUSION) | 
			
		
	
	
		
			
				
					|  |  |  | @ -1023,7 +1057,6 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin | 
			
		
	
		
			
				
					|  |  |  |  |     // Segment time im micro seconds
 | 
			
		
	
		
			
				
					|  |  |  |  |     uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); | 
			
		
	
		
			
				
					|  |  |  |  |   #endif | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   #if ENABLED(SLOWDOWN) | 
			
		
	
		
			
				
					|  |  |  |  |     if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { | 
			
		
	
		
			
				
					|  |  |  |  |       if (segment_time_us < min_segment_time_us) { | 
			
		
	
	
		
			
				
					|  |  |  | @ -1217,12 +1250,12 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin | 
			
		
	
		
			
				
					|  |  |  |  |     vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
 | 
			
		
	
		
			
				
					|  |  |  |  |     if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) { | 
			
		
	
		
			
				
					|  |  |  |  |     if (moves_queued() && !UNEAR_ZERO(previous_nominal_speed)) { | 
			
		
	
		
			
				
					|  |  |  |  |       // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
 | 
			
		
	
		
			
				
					|  |  |  |  |       // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
 | 
			
		
	
		
			
				
					|  |  |  |  |       float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] | 
			
		
	
		
			
				
					|  |  |  |  |       const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] | 
			
		
	
		
			
				
					|  |  |  |  |                               - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] | 
			
		
	
		
			
				
					|  |  |  |  |                         - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; | 
			
		
	
		
			
				
					|  |  |  |  |                               - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |       // Skip and use default max junction speed for 0 degree acute junction.
 | 
			
		
	
		
			
				
					|  |  |  |  |       if (cos_theta < 0.95) { | 
			
		
	
		
			
				
					|  |  |  |  |         vmax_junction = min(previous_nominal_speed, block->nominal_speed); | 
			
		
	
	
		
			
				
					|  |  |  | @ -1262,24 +1295,25 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin | 
			
		
	
		
			
				
					|  |  |  |  |     } | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { | 
			
		
	
		
			
				
					|  |  |  |  |   if (moves_queued > 1 && !UNEAR_ZERO(previous_nominal_speed)) { | 
			
		
	
		
			
				
					|  |  |  |  |     // Estimate a maximum velocity allowed at a joint of two successive segments.
 | 
			
		
	
		
			
				
					|  |  |  |  |     // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
 | 
			
		
	
		
			
				
					|  |  |  |  |     // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
 | 
			
		
	
		
			
				
					|  |  |  |  |     const bool prev_speed_larger = previous_nominal_speed > block->nominal_speed; | 
			
		
	
		
			
				
					|  |  |  |  |     const float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed); | 
			
		
	
		
			
				
					|  |  |  |  |     // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
 | 
			
		
	
		
			
				
					|  |  |  |  |     vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed; | 
			
		
	
		
			
				
					|  |  |  |  |     vmax_junction = min(block->nominal_speed, previous_nominal_speed); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
 | 
			
		
	
		
			
				
					|  |  |  |  |     float v_factor = 1; | 
			
		
	
		
			
				
					|  |  |  |  |     limited = 0; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |     // Now limit the jerk in all axes.
 | 
			
		
	
		
			
				
					|  |  |  |  |     const float smaller_speed_factor = vmax_junction / previous_nominal_speed; | 
			
		
	
		
			
				
					|  |  |  |  |     LOOP_XYZE(axis) { | 
			
		
	
		
			
				
					|  |  |  |  |       // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
 | 
			
		
	
		
			
				
					|  |  |  |  |       float v_exit = previous_speed[axis], v_entry = current_speed[axis]; | 
			
		
	
		
			
				
					|  |  |  |  |       if (prev_speed_larger) v_exit *= smaller_speed_factor; | 
			
		
	
		
			
				
					|  |  |  |  |       float v_exit = previous_speed[axis] * smaller_speed_factor, | 
			
		
	
		
			
				
					|  |  |  |  |             v_entry = current_speed[axis]; | 
			
		
	
		
			
				
					|  |  |  |  |       if (limited) { | 
			
		
	
		
			
				
					|  |  |  |  |         v_exit *= v_factor; | 
			
		
	
		
			
				
					|  |  |  |  |         v_entry *= v_factor; | 
			
		
	
	
		
			
				
					|  |  |  | @ -1374,79 +1408,9 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   recalculate(); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | } // _buffer_steps()
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | /**
 | 
			
		
	
		
			
				
					|  |  |  |  |  * Planner::_buffer_line | 
			
		
	
		
			
				
					|  |  |  |  |  * | 
			
		
	
		
			
				
					|  |  |  |  |  * Add a new linear movement to the buffer in axis units. | 
			
		
	
		
			
				
					|  |  |  |  |  * | 
			
		
	
		
			
				
					|  |  |  |  |  * Leveling and kinematics should be applied ahead of calling this. | 
			
		
	
		
			
				
					|  |  |  |  |  * | 
			
		
	
		
			
				
					|  |  |  |  |  *  a,b,c,e   - target positions in mm and/or degrees | 
			
		
	
		
			
				
					|  |  |  |  |  *  fr_mm_s   - (target) speed of the move | 
			
		
	
		
			
				
					|  |  |  |  |  *  extruder  - target extruder | 
			
		
	
		
			
				
					|  |  |  |  |  */ | 
			
		
	
		
			
				
					|  |  |  |  | void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) { | 
			
		
	
		
			
				
					|  |  |  |  |   // When changing extruders recalculate steps corresponding to the E position
 | 
			
		
	
		
			
				
					|  |  |  |  |   #if ENABLED(DISTINCT_E_FACTORS) | 
			
		
	
		
			
				
					|  |  |  |  |     if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { | 
			
		
	
		
			
				
					|  |  |  |  |       position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); | 
			
		
	
		
			
				
					|  |  |  |  |       last_extruder = extruder; | 
			
		
	
		
			
				
					|  |  |  |  |     } | 
			
		
	
		
			
				
					|  |  |  |  |   #endif | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // The target position of the tool in absolute steps
 | 
			
		
	
		
			
				
					|  |  |  |  |   // Calculate target position in absolute steps
 | 
			
		
	
		
			
				
					|  |  |  |  |   const int32_t target[XYZE] = { | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(a * axis_steps_per_mm[X_AXIS]), | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(b * axis_steps_per_mm[Y_AXIS]), | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(c * axis_steps_per_mm[Z_AXIS]), | 
			
		
	
		
			
				
					|  |  |  |  |     LROUND(e * axis_steps_per_mm[E_AXIS_N]) | 
			
		
	
		
			
				
					|  |  |  |  |   }; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   /* <-- add a slash to enable
 | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR("  _buffer_line FR:", fr_mm_s); | 
			
		
	
		
			
				
					|  |  |  |  |     #if IS_KINEMATIC | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" A:", a); | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" (", target[A_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" steps) B:", b); | 
			
		
	
		
			
				
					|  |  |  |  |     #else | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" X:", a); | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" (", target[X_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" steps) Y:", b); | 
			
		
	
		
			
				
					|  |  |  |  |     #endif | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" (", target[Y_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     #if ENABLED(DELTA) | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" steps) C:", c); | 
			
		
	
		
			
				
					|  |  |  |  |     #else | 
			
		
	
		
			
				
					|  |  |  |  |       SERIAL_ECHOPAIR(" steps) Z:", c); | 
			
		
	
		
			
				
					|  |  |  |  |     #endif | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" (", target[Z_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" steps) E:", e); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOPAIR(" (", target[E_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     SERIAL_ECHOLNPGM(" steps)"); | 
			
		
	
		
			
				
					|  |  |  |  |   //*/
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
 | 
			
		
	
		
			
				
					|  |  |  |  |   if (DEBUGGING(DRYRUN)) | 
			
		
	
		
			
				
					|  |  |  |  |     position[E_AXIS] = target[E_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // Always split the first move in two so it can chain
 | 
			
		
	
		
			
				
					|  |  |  |  |   if (!blocks_queued()) { | 
			
		
	
		
			
				
					|  |  |  |  |     DISABLE_STEPPER_DRIVER_INTERRUPT(); | 
			
		
	
		
			
				
					|  |  |  |  |     #define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1 | 
			
		
	
		
			
				
					|  |  |  |  |     const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) }; | 
			
		
	
		
			
				
					|  |  |  |  |     _buffer_steps(between, fr_mm_s, extruder); | 
			
		
	
		
			
				
					|  |  |  |  |     _buffer_steps(target, fr_mm_s, extruder); | 
			
		
	
		
			
				
					|  |  |  |  |     ENABLE_STEPPER_DRIVER_INTERRUPT(); | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   else | 
			
		
	
		
			
				
					|  |  |  |  |     _buffer_steps(target, fr_mm_s, extruder); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   stepper.wake_up(); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | } // _buffer_line()
 | 
			
		
	
		
			
				
					|  |  |  |  | } // buffer_line()
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | /**
 | 
			
		
	
		
			
				
					|  |  |  |  |  * Directly set the planner XYZ position (and stepper positions) | 
			
		
	
	
		
			
				
					|  |  |  | 
 |