Suppress some compiler warnings

master
Richard Wackerbarth 9 years ago
parent 23d742bf06
commit 29b456ae07

@ -5,6 +5,10 @@
#define MARLIN_H #define MARLIN_H
#define FORCE_INLINE __attribute__((always_inline)) inline #define FORCE_INLINE __attribute__((always_inline)) inline
/**
* Compiler warning on unused varable.
*/
#define UNUSED(x) (void) (x)
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>

@ -1,8 +1,8 @@
#include "Marlin.h" #include "Marlin.h"
#include "buzzer.h"
#include "ultralcd.h"
#if HAS_BUZZER #if HAS_BUZZER
#include "buzzer.h"
#include "ultralcd.h"
void buzz(long duration, uint16_t freq) { void buzz(long duration, uint16_t freq) {
if (freq > 0) { if (freq > 0) {
#if ENABLED(LCD_USE_I2C_BUZZER) #if ENABLED(LCD_USE_I2C_BUZZER)

@ -168,7 +168,7 @@ void Config_StoreSettings() {
EEPROM_WRITE_VAR(i, mesh_num_x); EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y); EEPROM_WRITE_VAR(i, mesh_num_y);
dummy = 0.0f; dummy = 0.0f;
for (int q=0; q<mesh_num_x*mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy); for (uint q=0; q<mesh_num_x*mesh_num_y; q++) EEPROM_WRITE_VAR(i, dummy);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
#if DISABLED(ENABLE_AUTO_BED_LEVELING) #if DISABLED(ENABLE_AUTO_BED_LEVELING)
@ -470,7 +470,7 @@ void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE; float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION; long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (uint16_t i = 0; i < NUM_AXIS; i++) { for (uint8_t i = 0; i < NUM_AXIS; i++) {
axis_steps_per_unit[i] = tmp1[i]; axis_steps_per_unit[i] = tmp1[i];
max_feedrate[i] = tmp2[i]; max_feedrate[i] = tmp2[i];
max_acceleration_units_per_sq_second[i] = tmp3[i]; max_acceleration_units_per_sq_second[i] = tmp3[i];
@ -565,7 +565,7 @@ void Config_ResetDefault() {
#endif #endif
volumetric_enabled = false; volumetric_enabled = false;
for (int q=0; q<COUNT(filament_size); q++) for (uint8_t q=0; q<COUNT(filament_size); q++)
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();

@ -1,7 +1,7 @@
/** /**
* planner.cpp - Buffer movement commands and manage the acceleration profile plan * planner.cpp - Buffer movement commands and manage the acceleration profile plan
* Part of Grbl * Part of Grbl
* *
* Copyright (c) 2009-2011 Simen Svale Skogsrud * Copyright (c) 2009-2011 Simen Svale Skogsrud
* *
* Grbl is free software: you can redistribute it and/or modify * Grbl is free software: you can redistribute it and/or modify
@ -134,14 +134,14 @@ unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration: // given acceleration:
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0 if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
} }
// This function gives you the point at which you must start braking (at the rate of -acceleration) if // This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and // a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
@ -179,7 +179,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
} }
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE)
volatile long initial_advance = block->advance * entry_factor * entry_factor; volatile long initial_advance = block->advance * entry_factor * entry_factor;
volatile long final_advance = block->advance * exit_factor * exit_factor; volatile long final_advance = block->advance * exit_factor * exit_factor;
#endif // ADVANCE #endif // ADVANCE
@ -197,16 +197,16 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
#endif #endif
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance. // acceleration within the allotted distance.
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
} }
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal // This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks. // velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) { //inline float junction_jerk(block_t *before, block_t *after) {
// return sqrt( // return sqrt(
@ -217,6 +217,7 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
// The kernel called by planner_recalculate() when scanning the plan from last to first entry. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if (!current) return; if (!current) return;
UNUSED(previous);
if (next) { if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
@ -229,7 +230,7 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) { if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
current->entry_speed = min(current->max_entry_speed, current->entry_speed = min(current->max_entry_speed,
max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
} }
else { else {
current->entry_speed = current->max_entry_speed; current->entry_speed = current->max_entry_speed;
} }
@ -239,16 +240,16 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
} // Skip last block. Already initialized and set for recalculation. } // Skip last block. Already initialized and set for recalculation.
} }
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass. // implements the reverse pass.
void planner_reverse_pass() { void planner_reverse_pass() {
uint8_t block_index = block_buffer_head; uint8_t block_index = block_buffer_head;
//Make a local copy of block_buffer_tail, because the interrupt can alter it //Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
unsigned char tail = block_buffer_tail; unsigned char tail = block_buffer_tail;
CRITICAL_SECTION_END CRITICAL_SECTION_END
if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
block_index = BLOCK_MOD(block_buffer_head - 3); block_index = BLOCK_MOD(block_buffer_head - 3);
block_t *block[3] = { NULL, NULL, NULL }; block_t *block[3] = { NULL, NULL, NULL };
@ -265,6 +266,7 @@ void planner_reverse_pass() {
// The kernel called by planner_recalculate() when scanning the plan from first to last entry. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if (!previous) return; if (!previous) return;
UNUSED(next);
// If the previous block is an acceleration block, but it is not long enough to complete the // If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry // full speed change within the block, we need to adjust the entry speed accordingly. Entry
@ -300,8 +302,8 @@ void planner_forward_pass() {
planner_forward_pass_kernel(block[1], block[2], NULL); planner_forward_pass_kernel(block[1], block[2], NULL);
} }
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after // entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks. // updating the blocks.
void planner_recalculate_trapezoids() { void planner_recalculate_trapezoids() {
int8_t block_index = block_buffer_tail; int8_t block_index = block_buffer_tail;
@ -332,22 +334,22 @@ void planner_recalculate_trapezoids() {
// Recalculates the motion plan according to the following algorithm: // Recalculates the motion plan according to the following algorithm:
// //
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that: // so that:
// a. The junction jerk is within the set limit // a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant // b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration. // acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if // 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster acceleration than the one, true // a. The speed increase within one block would require faster acceleration than the one, true
// constant acceleration. // constant acceleration.
// //
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will: // the set limit. Finally it will:
// //
// 3. Recalculate trapezoids for all blocks. // 3. Recalculate trapezoids for all blocks.
void planner_recalculate() { void planner_recalculate() {
planner_reverse_pass(); planner_reverse_pass();
planner_forward_pass(); planner_forward_pass();
planner_recalculate_trapezoids(); planner_recalculate_trapezoids();
@ -356,7 +358,7 @@ void planner_recalculate() {
void plan_init() { void plan_init() {
block_buffer_head = block_buffer_tail = 0; block_buffer_head = block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position memset(position, 0, sizeof(position)); // clear position
for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0; for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
previous_nominal_speed = 0.0; previous_nominal_speed = 0.0;
} }
@ -469,7 +471,7 @@ void check_axes_activity() {
float junction_deviation = 0.1; float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
#if ENABLED(ENABLE_AUTO_BED_LEVELING) || ENABLED(MESH_BED_LEVELING) #if ENABLED(ENABLE_AUTO_BED_LEVELING) || ENABLED(MESH_BED_LEVELING)
@ -481,7 +483,7 @@ float junction_deviation = 0.1;
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head); int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot. // If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer. // Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle(); while (block_buffer_tail == next_buffer_head) idle();
@ -497,7 +499,7 @@ float junction_deviation = 0.1;
long target[NUM_AXIS]; long target[NUM_AXIS];
target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
float dx = target[X_AXIS] - position[X_AXIS], float dx = target[X_AXIS] - position[X_AXIS],
@ -569,7 +571,7 @@ float junction_deviation = 0.1;
block->e_to_p_pressure = EtoPPressure; block->e_to_p_pressure = EtoPPressure;
#endif #endif
// Compute direction bits for this block // Compute direction bits for this block
uint8_t db = 0; uint8_t db = 0;
#if ENABLED(COREXY) #if ENABLED(COREXY)
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
@ -585,10 +587,10 @@ float junction_deviation = 0.1;
if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
#else #else
if (dx < 0) db |= BIT(X_AXIS); if (dx < 0) db |= BIT(X_AXIS);
if (dy < 0) db |= BIT(Y_AXIS); if (dy < 0) db |= BIT(Y_AXIS);
if (dz < 0) db |= BIT(Z_AXIS); if (dz < 0) db |= BIT(Z_AXIS);
#endif #endif
if (de < 0) db |= BIT(E_AXIS); if (de < 0) db |= BIT(E_AXIS);
block->direction_bits = db; block->direction_bits = db;
block->active_extruder = extruder; block->active_extruder = extruder;
@ -622,7 +624,7 @@ float junction_deviation = 0.1;
for (int i=0; i<EXTRUDERS; i++) for (int i=0; i<EXTRUDERS; i++)
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
switch(extruder) { switch(extruder) {
case 0: case 0:
enable_e0(); enable_e0();
@ -686,13 +688,13 @@ float junction_deviation = 0.1;
NOLESS(feed_rate, mintravelfeedrate); NOLESS(feed_rate, mintravelfeedrate);
/** /**
* This part of the code calculates the total length of the movement. * This part of the code calculates the total length of the movement.
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
*/ */
#if ENABLED(COREXY) #if ENABLED(COREXY)
float delta_mm[6]; float delta_mm[6];
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
@ -717,7 +719,7 @@ float junction_deviation = 0.1;
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);
} }
else { else {
block->millimeters = sqrt( block->millimeters = sqrt(
#if ENABLED(COREXY) #if ENABLED(COREXY)
@ -729,7 +731,7 @@ float junction_deviation = 0.1;
#endif #endif
); );
} }
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters; float inverse_second = feed_rate * inverse_millimeters;
@ -762,7 +764,7 @@ float junction_deviation = 0.1;
#if ENABLED(FILAMENT_SENSOR) #if ENABLED(FILAMENT_SENSOR)
//FMM update ring buffer used for delay with filament measurements //FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10; const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
@ -803,7 +805,7 @@ float junction_deviation = 0.1;
unsigned char direction_change = block->direction_bits ^ old_direction_bits; unsigned char direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits; old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor); segment_time = lround((float)segment_time / speed_factor);
long xs0 = axis_segment_time[X_AXIS][0], long xs0 = axis_segment_time[X_AXIS][0],
xs1 = axis_segment_time[X_AXIS][1], xs1 = axis_segment_time[X_AXIS][1],
xs2 = axis_segment_time[X_AXIS][2], xs2 = axis_segment_time[X_AXIS][2],
@ -834,14 +836,14 @@ float junction_deviation = 0.1;
} }
#endif // XY_FREQUENCY_LIMIT #endif // XY_FREQUENCY_LIMIT
// Correct the speed // Correct the speed
if (speed_factor < 1.0) { if (speed_factor < 1.0) {
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor; for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
block->nominal_speed *= speed_factor; block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor; block->nominal_rate *= speed_factor;
} }
// Compute and limit the acceleration rate for the trapezoid generator. // Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count / block->millimeters; float steps_per_mm = block->step_event_count / block->millimeters;
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
if (bsx == 0 && bsy == 0 && bsz == 0) { if (bsx == 0 && bsy == 0 && bsz == 0) {
@ -863,7 +865,7 @@ float junction_deviation = 0.1;
if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps; if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps; if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps; if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
block->acceleration_st = acc_st; block->acceleration_st = acc_st;
block->acceleration = acc_st / steps_per_mm; block->acceleration = acc_st / steps_per_mm;
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
@ -911,7 +913,7 @@ float junction_deviation = 0.1;
// Start with a safe speed // Start with a safe speed
float vmax_junction = max_xy_jerk / 2; float vmax_junction = max_xy_jerk / 2;
float vmax_junction_factor = 1.0; float vmax_junction_factor = 1.0;
float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2; float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS]; float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2); if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
@ -949,7 +951,7 @@ float junction_deviation = 0.1;
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the // the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks. // the maximum junction speed and may always be ignored for any speed reduction checks.
block->nominal_length_flag = (block->nominal_speed <= v_allowable); block->nominal_length_flag = (block->nominal_speed <= v_allowable);
block->recalculate_flag = true; // Always calculate trapezoid for new block block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed // Update previous path unit_vector and nominal speed
@ -1029,7 +1031,7 @@ float junction_deviation = 0.1;
} }
void plan_set_e_position(const float &e) { void plan_set_e_position(const float &e) {
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_e_position(position[E_AXIS]); st_set_e_position(position[E_AXIS]);
} }

@ -1185,6 +1185,9 @@ void digitalPotWrite(int address, int value) {
SPI.transfer(value); SPI.transfer(value);
digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip: digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
//delay(10); //delay(10);
#else
UNUSED(address);
UNUSED(value);
#endif #endif
} }
@ -1216,14 +1219,16 @@ void digipot_current(uint8_t driver, int current) {
#if HAS_DIGIPOTSS #if HAS_DIGIPOTSS
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current); digitalPotWrite(digipot_ch[driver], current);
#endif #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
#ifdef MOTOR_CURRENT_PWM_XY_PIN
switch(driver) { switch(driver) {
case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break; case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
} }
#endif #else
UNUSED(driver);
UNUSED(current);
#endif
} }
void microstep_init() { void microstep_init() {

@ -2,9 +2,9 @@
#define ULTRALCD_H #define ULTRALCD_H
#include "Marlin.h" #include "Marlin.h"
#include "buzzer.h"
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
#include "buzzer.h"
int lcd_strlen(char *s); int lcd_strlen(char *s);
int lcd_strlen_P(const char *s); int lcd_strlen_P(const char *s);
void lcd_update(); void lcd_update();
@ -105,8 +105,8 @@
FORCE_INLINE void lcd_update() {} FORCE_INLINE void lcd_update() {}
FORCE_INLINE void lcd_init() {} FORCE_INLINE void lcd_init() {}
FORCE_INLINE bool lcd_hasstatus() { return false; } FORCE_INLINE bool lcd_hasstatus() { return false; }
FORCE_INLINE void lcd_setstatus(const char* message, const bool persist=false) {} FORCE_INLINE void lcd_setstatus(const char* message, const bool persist=false) {UNUSED(message); UNUSED(persist);}
FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {} FORCE_INLINE void lcd_setstatuspgm(const char* message, const uint8_t level=0) {UNUSED(message); UNUSED(level);}
FORCE_INLINE void lcd_buttons_update() {} FORCE_INLINE void lcd_buttons_update() {}
FORCE_INLINE void lcd_reset_alert_level() {} FORCE_INLINE void lcd_reset_alert_level() {}
FORCE_INLINE bool lcd_detected(void) { return true; } FORCE_INLINE bool lcd_detected(void) { return true; }

Loading…
Cancel
Save