|
|
@ -2333,10 +2333,9 @@ static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
* @details Used by probe_pt to do a single Z probe.
|
|
|
|
* @details Used by probe_pt to do a single Z probe.
|
|
|
|
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
|
|
|
|
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* @param short_move Flag for a shorter probe move towards the bed
|
|
|
|
|
|
|
|
* @return The raw Z position where the probe was triggered
|
|
|
|
* @return The raw Z position where the probe was triggered
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
static float run_z_probe(const bool short_move=true) {
|
|
|
|
static float run_z_probe() {
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
|
|
|
@ -2374,7 +2373,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// move down slowly to find bed
|
|
|
|
// move down slowly to find bed
|
|
|
|
if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
|
|
|
|
if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
|
|
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
|
|
|
@ -2413,12 +2412,11 @@ static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
|
|
|
|
|
|
|
|
const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
|
|
|
|
|
|
|
if (printable
|
|
|
|
if (!printable
|
|
|
|
? !position_is_reachable(nx, ny)
|
|
|
|
? !position_is_reachable(nx, ny)
|
|
|
|
: !position_is_reachable_by_probe(rx, ry)
|
|
|
|
: !position_is_reachable_by_probe(rx, ry)
|
|
|
|
) return NAN;
|
|
|
|
) return NAN;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#if ENABLED(DELTA)
|
|
|
@ -2426,12 +2424,6 @@ static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
|
|
|
|
// Store the status of the soft endstops and disable if we're probing a non-printable location
|
|
|
|
|
|
|
|
static bool enable_soft_endstops = soft_endstops_enabled;
|
|
|
|
|
|
|
|
if (!printable) soft_endstops_enabled = false;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
|
|
|
|
|
|
|
|
// Move the probe to the given XY
|
|
|
|
// Move the probe to the given XY
|
|
|
@ -2439,7 +2431,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
|
|
|
|
|
|
|
|
float measured_z = NAN;
|
|
|
|
float measured_z = NAN;
|
|
|
|
if (!DEPLOY_PROBE()) {
|
|
|
|
if (!DEPLOY_PROBE()) {
|
|
|
|
measured_z = run_z_probe(printable);
|
|
|
|
measured_z = run_z_probe();
|
|
|
|
|
|
|
|
|
|
|
|
if (!stow)
|
|
|
|
if (!stow)
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
@ -2447,11 +2439,6 @@ static void clean_up_after_endstop_or_probe_move() {
|
|
|
|
if (STOW_PROBE()) measured_z = NAN;
|
|
|
|
if (STOW_PROBE()) measured_z = NAN;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
|
|
|
|
// Restore the soft endstop status
|
|
|
|
|
|
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
|
|
|
@ -5592,7 +5579,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
r = delta_calibration_radius * 0.1;
|
|
|
|
r = delta_calibration_radius * 0.1;
|
|
|
|
z_at_pt[CEN] +=
|
|
|
|
z_at_pt[CEN] +=
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
|
|
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
@ -5621,7 +5608,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
interpol = fmod(axis, 1);
|
|
|
|
interpol = fmod(axis, 1);
|
|
|
|
const float z_temp =
|
|
|
|
const float z_temp =
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
|
|
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
@ -5637,7 +5624,6 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
z_at_pt[axis] /= _7P_STEP / steps;
|
|
|
|
z_at_pt[axis] /= _7P_STEP / steps;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float S1 = z_at_pt[CEN],
|
|
|
|
float S1 = z_at_pt[CEN],
|
|
|
|
S2 = sq(z_at_pt[CEN]);
|
|
|
|
S2 = sq(z_at_pt[CEN]);
|
|
|
|
int16_t N = 1;
|
|
|
|
int16_t N = 1;
|
|
|
@ -5675,6 +5661,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) {
|
|
|
|
LOOP_XYZ(axis) {
|
|
|
|
delta_endstop_adj[axis] -= 1.0;
|
|
|
|
delta_endstop_adj[axis] -= 1.0;
|
|
|
|
|
|
|
|
recalc_delta_settings();
|
|
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
endstops.enable(true);
|
|
|
|
if (!home_delta()) return;
|
|
|
|
if (!home_delta()) return;
|
|
|
@ -5688,6 +5675,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
delta_endstop_adj[axis] += 1.0;
|
|
|
|
delta_endstop_adj[axis] += 1.0;
|
|
|
|
|
|
|
|
recalc_delta_settings();
|
|
|
|
switch (axis) {
|
|
|
|
switch (axis) {
|
|
|
|
case A_AXIS :
|
|
|
|
case A_AXIS :
|
|
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
|
|
|
|
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
|
|
|
@ -5705,7 +5693,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
|
|
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
|
|
|
|
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
|
|
|
|
delta_radius += 1.0 * zig_zag;
|
|
|
|
delta_radius += 1.0 * zig_zag;
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
recalc_delta_settings();
|
|
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
endstops.enable(true);
|
|
|
|
if (!home_delta()) return;
|
|
|
|
if (!home_delta()) return;
|
|
|
@ -5718,7 +5706,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
|
|
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
print_G33_results(z_at_pt, true, true);
|
|
|
|
delta_radius -= 1.0 * zig_zag;
|
|
|
|
delta_radius -= 1.0 * zig_zag;
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
recalc_delta_settings();
|
|
|
|
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
|
|
|
|
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
|
|
|
|
}
|
|
|
|
}
|
|
|
|
r_fac /= 2.0;
|
|
|
|
r_fac /= 2.0;
|
|
|
@ -5731,7 +5719,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
delta_height -= z_temp;
|
|
|
|
delta_height -= z_temp;
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
recalc_delta_settings();
|
|
|
|
|
|
|
|
|
|
|
|
endstops.enable(true);
|
|
|
|
endstops.enable(true);
|
|
|
|
if (!home_delta()) return;
|
|
|
|
if (!home_delta()) return;
|
|
|
@ -5751,7 +5739,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
|
|
|
|
delta_height -= z_temp;
|
|
|
|
delta_height -= z_temp;
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
recalc_delta_settings();
|
|
|
|
switch (axis) {
|
|
|
|
switch (axis) {
|
|
|
|
case A_AXIS :
|
|
|
|
case A_AXIS :
|
|
|
|
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
|
|
|
|
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
|
|
|
@ -6038,7 +6026,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
delta_height -= z_temp;
|
|
|
|
delta_height -= z_temp;
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
recalc_delta_settings();
|
|
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
|
|
|
|
|
|
|
|
// print report
|
|
|
|
// print report
|
|
|
@ -8997,7 +8985,7 @@ inline void gcode_M205() {
|
|
|
|
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
recalc_delta_settings();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
/**
|
|
|
|
* M666: Set delta endstop adjustment
|
|
|
|
* M666: Set delta endstop adjustment
|
|
|
@ -9440,8 +9428,6 @@ inline void gcode_M226() {
|
|
|
|
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
|
|
|
|
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
|
|
|
|
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
|
|
|
|
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
|
|
|
|
|
|
|
|
|
|
|
|
thermalManager.updatePID();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHO_START();
|
|
|
|
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
|
|
|
|
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
|
|
|
|
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
|
|
|
|
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
|
|
|
@ -11409,8 +11395,6 @@ void process_parsed_command() {
|
|
|
|
|
|
|
|
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
|
|
|
|
|
|
|
|
#if PROBE_SELECTED
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
|
|
|
|
|
|
|
|
case 33: // G33: Delta Auto-Calibration
|
|
|
|
case 33: // G33: Delta Auto-Calibration
|
|
|
@ -11419,8 +11403,6 @@ void process_parsed_command() {
|
|
|
|
|
|
|
|
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|
|
|
|
|
|
|
|
|
|
|
|
#endif // PROBE_SELECTED
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
|
|
case 38: // G38.2 & G38.3
|
|
|
|
case 38: // G38.2 & G38.3
|
|
|
|
if (parser.subcode == 2 || parser.subcode == 3)
|
|
|
|
if (parser.subcode == 2 || parser.subcode == 3)
|
|
|
@ -12355,18 +12337,20 @@ void ok_to_send() {
|
|
|
|
* Recalculate factors used for delta kinematics whenever
|
|
|
|
* Recalculate factors used for delta kinematics whenever
|
|
|
|
* settings have been changed (e.g., by M665).
|
|
|
|
* settings have been changed (e.g., by M665).
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
|
|
|
|
void recalc_delta_settings() {
|
|
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
|
|
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
|
|
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
|
|
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
|
|
|
|
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
|
|
|
|
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
|
|
|
|
|
|
|
|
update_software_endstops(Z_AXIS);
|
|
|
|
|
|
|
|
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT)
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT)
|
|
|
|