|  |  |  | @ -7831,76 +7831,59 @@ void clamp_to_software_endstops(float target[3]) { | 
			
		
	
		
			
				
					|  |  |  |  | #if ENABLED(MESH_BED_LEVELING) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  | // This function is used to split lines on mesh borders so each segment is only part of one mesh area
 | 
			
		
	
		
			
				
					|  |  |  |  | void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { | 
			
		
	
		
			
				
					|  |  |  |  |   if (!mbl.active()) { | 
			
		
	
		
			
				
					|  |  |  |  |     planner.buffer_line(x, y, z, e, fr_mm_s, extruder); | 
			
		
	
		
			
				
					|  |  |  |  |     set_current_to_destination(); | 
			
		
	
		
			
				
					|  |  |  |  |     return; | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), | 
			
		
	
		
			
				
					|  |  |  |  |       pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), | 
			
		
	
		
			
				
					|  |  |  |  |       cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)), | 
			
		
	
		
			
				
					|  |  |  |  |       cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS)); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(pcx, MESH_NUM_X_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(pcy, MESH_NUM_Y_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(cx,  MESH_NUM_X_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(cy,  MESH_NUM_Y_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   if (pcx == cx && pcy == cy) { | 
			
		
	
		
			
				
					|  |  |  |  | void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { | 
			
		
	
		
			
				
					|  |  |  |  |   int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), | 
			
		
	
		
			
				
					|  |  |  |  |       cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), | 
			
		
	
		
			
				
					|  |  |  |  |       cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)), | 
			
		
	
		
			
				
					|  |  |  |  |       cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS)); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(cx1, MESH_NUM_X_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(cy1, MESH_NUM_Y_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(cx2, MESH_NUM_X_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  |   NOMORE(cy2, MESH_NUM_Y_POINTS - 2); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   if (cx1 == cx2 && cy1 == cy2) { | 
			
		
	
		
			
				
					|  |  |  |  |     // Start and end on same mesh square
 | 
			
		
	
		
			
				
					|  |  |  |  |     planner.buffer_line(x, y, z, e, fr_mm_s, extruder); | 
			
		
	
		
			
				
					|  |  |  |  |     line_to_destination(fr_mm_m); | 
			
		
	
		
			
				
					|  |  |  |  |     set_current_to_destination(); | 
			
		
	
		
			
				
					|  |  |  |  |     return; | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   float nx, ny, nz, ne, normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |   if (cx > pcx && TEST(x_splits, cx)) { | 
			
		
	
		
			
				
					|  |  |  |  |     nx = mbl.get_probe_x(cx) + home_offset[X_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |     normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     CBI(x_splits, cx); | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   else if (cx < pcx && TEST(x_splits, pcx)) { | 
			
		
	
		
			
				
					|  |  |  |  |     nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |     normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     CBI(x_splits, pcx); | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   else if (cy > pcy && TEST(y_splits, cy)) { | 
			
		
	
		
			
				
					|  |  |  |  |     ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |     normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     CBI(y_splits, cy); | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   else if (cy < pcy && TEST(y_splits, pcy)) { | 
			
		
	
		
			
				
					|  |  |  |  |     ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |     normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; | 
			
		
	
		
			
				
					|  |  |  |  |     CBI(y_splits, pcy); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   float normalized_dist, end[NUM_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // Split at the left/front border of the right/top square
 | 
			
		
	
		
			
				
					|  |  |  |  |   int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); | 
			
		
	
		
			
				
					|  |  |  |  |   if (cx2 != cx1 && TEST(x_splits, gcx)) { | 
			
		
	
		
			
				
					|  |  |  |  |     memcpy(end, destination, sizeof(end)); | 
			
		
	
		
			
				
					|  |  |  |  |     destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |     normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     destination[Y_AXIS] = MBL_SEGMENT_END(Y); | 
			
		
	
		
			
				
					|  |  |  |  |     CBI(x_splits, gcx); | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   else if (cy2 != cy1 && TEST(y_splits, gcy)) { | 
			
		
	
		
			
				
					|  |  |  |  |     memcpy(end, destination, sizeof(end)); | 
			
		
	
		
			
				
					|  |  |  |  |     destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; | 
			
		
	
		
			
				
					|  |  |  |  |     normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); | 
			
		
	
		
			
				
					|  |  |  |  |     destination[X_AXIS] = MBL_SEGMENT_END(X); | 
			
		
	
		
			
				
					|  |  |  |  |     CBI(y_splits, gcy); | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  |   else { | 
			
		
	
		
			
				
					|  |  |  |  |     // Already split on a border
 | 
			
		
	
		
			
				
					|  |  |  |  |     planner.buffer_line(x, y, z, e, fr_mm_s, extruder); | 
			
		
	
		
			
				
					|  |  |  |  |     line_to_destination(fr_mm_m); | 
			
		
	
		
			
				
					|  |  |  |  |     set_current_to_destination(); | 
			
		
	
		
			
				
					|  |  |  |  |     return; | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   destination[Z_AXIS] = MBL_SEGMENT_END(Z); | 
			
		
	
		
			
				
					|  |  |  |  |   destination[E_AXIS] = MBL_SEGMENT_END(E); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // Do the split and look for more borders
 | 
			
		
	
		
			
				
					|  |  |  |  |   destination[X_AXIS] = nx; | 
			
		
	
		
			
				
					|  |  |  |  |   destination[Y_AXIS] = ny; | 
			
		
	
		
			
				
					|  |  |  |  |   destination[Z_AXIS] = nz; | 
			
		
	
		
			
				
					|  |  |  |  |   destination[E_AXIS] = ne; | 
			
		
	
		
			
				
					|  |  |  |  |   mesh_buffer_line(nx, ny, nz, ne, fr_mm_s, extruder, x_splits, y_splits); | 
			
		
	
		
			
				
					|  |  |  |  |   destination[X_AXIS] = x; | 
			
		
	
		
			
				
					|  |  |  |  |   destination[Y_AXIS] = y; | 
			
		
	
		
			
				
					|  |  |  |  |   destination[Z_AXIS] = z; | 
			
		
	
		
			
				
					|  |  |  |  |   destination[E_AXIS] = e; | 
			
		
	
		
			
				
					|  |  |  |  |   mesh_buffer_line(x, y, z, e, fr_mm_s, extruder, x_splits, y_splits); | 
			
		
	
		
			
				
					|  |  |  |  |   mesh_line_to_destination(fr_mm_m, x_splits, y_splits); | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
		
			
				
					|  |  |  |  |   // Restore destination from stack
 | 
			
		
	
		
			
				
					|  |  |  |  |   memcpy(destination, end, sizeof(end)); | 
			
		
	
		
			
				
					|  |  |  |  |   mesh_line_to_destination(fr_mm_m, x_splits, y_splits); | 
			
		
	
		
			
				
					|  |  |  |  | } | 
			
		
	
		
			
				
					|  |  |  |  | #endif  // MESH_BED_LEVELING
 | 
			
		
	
		
			
				
					|  |  |  |  | 
 | 
			
		
	
	
		
			
				
					|  |  |  | @ -7997,11 +7980,13 @@ void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, c | 
			
		
	
		
			
				
					|  |  |  |  |     } | 
			
		
	
		
			
				
					|  |  |  |  |     else { | 
			
		
	
		
			
				
					|  |  |  |  |       #if ENABLED(MESH_BED_LEVELING) | 
			
		
	
		
			
				
					|  |  |  |  |         mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder); | 
			
		
	
		
			
				
					|  |  |  |  |         if (mbl.active()) { | 
			
		
	
		
			
				
					|  |  |  |  |           mesh_line_to_destination(MMM_SCALED(feedrate_mm_m)); | 
			
		
	
		
			
				
					|  |  |  |  |           return false; | 
			
		
	
		
			
				
					|  |  |  |  |       #else | 
			
		
	
		
			
				
					|  |  |  |  |         line_to_destination(MMM_SCALED(feedrate_mm_m)); | 
			
		
	
		
			
				
					|  |  |  |  |         } | 
			
		
	
		
			
				
					|  |  |  |  |         else | 
			
		
	
		
			
				
					|  |  |  |  |       #endif | 
			
		
	
		
			
				
					|  |  |  |  |           line_to_destination(MMM_SCALED(feedrate_mm_m)); | 
			
		
	
		
			
				
					|  |  |  |  |     } | 
			
		
	
		
			
				
					|  |  |  |  |     return true; | 
			
		
	
		
			
				
					|  |  |  |  |   } | 
			
		
	
	
		
			
				
					|  |  |  | 
 |