|
|
|
@ -5377,7 +5377,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
SERIAL_PROTOCOL_F(f, 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
inline void print_G33_settings(const bool end_stops, const bool tower_angles){
|
|
|
|
|
void print_G33_settings(const bool end_stops, const bool tower_angles) {
|
|
|
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
|
|
|
|
if (end_stops) {
|
|
|
|
|
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
|
|
|
|
@ -5517,20 +5517,11 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
if (!_0p_calibration) {
|
|
|
|
|
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
|
|
|
|
if (isnan(measured_z)) return G33_CLEANUP();
|
|
|
|
|
home_offset[Z_AXIS] -= measured_z;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
|
float z_at_pt[13] = { 0.0 };
|
|
|
|
|
|
|
|
|
|
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
|
|
|
|
if (_0p_calibration) test_precision = 0.00;
|
|
|
|
|
iterations++;
|
|
|
|
|
|
|
|
|
|
// Probe the points
|
|
|
|
@ -5598,7 +5589,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
// Solve matrices
|
|
|
|
|
|
|
|
|
|
if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
|
|
|
|
|
if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
|
|
|
|
|
if (zero_std_dev < zero_std_dev_min) {
|
|
|
|
|
COPY(e_old, endstop_adj);
|
|
|
|
|
dr_old = delta_radius;
|
|
|
|
@ -5607,26 +5598,33 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
|
|
|
|
|
float r_diff = delta_radius - delta_calibration_radius,
|
|
|
|
|
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
|
|
|
|
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
|
|
|
|
a_factor = 66.66 / delta_calibration_radius; //0.83 for cal_rd = 80mm
|
|
|
|
|
|
|
|
|
|
const float r_diff = delta_radius - delta_calibration_radius,
|
|
|
|
|
h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm
|
|
|
|
|
r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm
|
|
|
|
|
a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm (Slow down on 1st iteration)
|
|
|
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
|
|
|
#define Z6(I) ZP(6, I)
|
|
|
|
|
#define Z4(I) ZP(4, I)
|
|
|
|
|
#define Z2(I) ZP(2, I)
|
|
|
|
|
#define Z1(I) ZP(1, I)
|
|
|
|
|
h_factor /= 6.00;
|
|
|
|
|
r_factor /= 6.00;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
switch (probe_points) {
|
|
|
|
|
case 0:
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
#endif
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 1:
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
|
#endif
|
|
|
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(0);
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
@ -5652,9 +5650,12 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
|
|
|
|
|
|
|
|
|
|
if (towers_set) {
|
|
|
|
|
t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor;
|
|
|
|
|
t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor;
|
|
|
|
|
t_delta[C_AXIS] = (-Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor;
|
|
|
|
|
t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor;
|
|
|
|
|
t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor;
|
|
|
|
|
t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor;
|
|
|
|
|
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
|
|
|
|
|
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
|
|
|
|
|
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
@ -5707,7 +5708,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
|
|
|
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
|
|
|
|
|
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
|
|
|
|
|
SERIAL_PROTOCOLPGM("Calibration OK");
|
|
|
|
|
SERIAL_PROTOCOL_SP(36);
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
@ -5769,7 +5770,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
|
|
|
|
|
while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
|
|
|
|
|
|
|
|
|
|
G33_CLEANUP();
|
|
|
|
|
}
|
|
|
|
|