Independent PID parameters for each extruder

* Variables Kp, Ki, Kd, Kc now arrays of size EXTRUDERS
* M301 gains (optional, default=0) E parameter to define which
extruder's settings to modify. Tested, works with Repetier Host's EEPROM
config window, albeit only reads/updates settings for E0.
* All Kp, Ki, Kd, Kc parameters saved in EEPROM (version now v14), up to
3 extruders supported (same as Marlin in general)
master
grob6000 10 years ago
parent 6e8e9bb41e
commit 37c7e8300f

@ -38,7 +38,7 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
// wrong data being written to the variables. // wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V13" #define EEPROM_VERSION "V14"
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
void Config_StoreSettings() void Config_StoreSettings()
@ -63,11 +63,11 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i,delta_radius); EEPROM_WRITE_VAR(i,delta_radius);
EEPROM_WRITE_VAR(i,delta_diagonal_rod); EEPROM_WRITE_VAR(i,delta_diagonal_rod);
EEPROM_WRITE_VAR(i,delta_segments_per_second); EEPROM_WRITE_VAR(i,delta_segments_per_second);
#endif #endif//DELTA
#ifndef ULTIPANEL #ifndef ULTIPANEL
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED; int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
int absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; int absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif #endif//ULTIPANEL
EEPROM_WRITE_VAR(i,plaPreheatHotendTemp); EEPROM_WRITE_VAR(i,plaPreheatHotendTemp);
EEPROM_WRITE_VAR(i,plaPreheatHPBTemp); EEPROM_WRITE_VAR(i,plaPreheatHPBTemp);
EEPROM_WRITE_VAR(i,plaPreheatFanSpeed); EEPROM_WRITE_VAR(i,plaPreheatFanSpeed);
@ -76,37 +76,58 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i,absPreheatFanSpeed); EEPROM_WRITE_VAR(i,absPreheatFanSpeed);
EEPROM_WRITE_VAR(i,zprobe_zoffset); EEPROM_WRITE_VAR(i,zprobe_zoffset);
#ifdef PIDTEMP #ifdef PIDTEMP
EEPROM_WRITE_VAR(i,Kp); float dummy = 0.0f;
EEPROM_WRITE_VAR(i,Ki); for (int e = 0; e < 3; e++)
EEPROM_WRITE_VAR(i,Kd); {
#else if (e < EXTRUDERS)
{
EEPROM_WRITE_VAR(i,Kp[e]);
EEPROM_WRITE_VAR(i,Ki[e]);
EEPROM_WRITE_VAR(i,Kd[e]);
#ifdef PID_ADD_EXTRUSION_RATE
EEPROM_WRITE_VAR(i,Kc[e]);
#else//PID_ADD_EXTRUSION_RATE
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE_VAR(dummmy);
#endif//PID_ADD_EXTRUSION_RATE
}
else
{
dummy = 3000.0f;
EEPROM_WRITE_VAR(i, dummy);
dummy = 0.0f;
EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy);
}
}
#else//PIDTEMP
float dummy = 3000.0f; float dummy = 3000.0f;
EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy);
dummy = 0.0f; dummy = 0.0f;
EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy);
EEPROM_WRITE_VAR(i,dummy); EEPROM_WRITE_VAR(i,dummy);
#endif #endif//PIDTEMP
#ifndef DOGLCD #ifndef DOGLCD
int lcd_contrast = 32; int lcd_contrast = 32;
#endif #endif//DOGLCD
EEPROM_WRITE_VAR(i,lcd_contrast); EEPROM_WRITE_VAR(i,lcd_contrast);
#ifdef SCARA #ifdef SCARA
EEPROM_WRITE_VAR(i,axis_scaling); // Add scaling for SCARA EEPROM_WRITE_VAR(i,axis_scaling); // Add scaling for SCARA
#endif #endif//SCARA
#ifdef FWRETRACT #ifdef FWRETRACT
EEPROM_WRITE_VAR(i,autoretract_enabled); EEPROM_WRITE_VAR(i,autoretract_enabled);
EEPROM_WRITE_VAR(i,retract_length); EEPROM_WRITE_VAR(i,retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_length_swap); EEPROM_WRITE_VAR(i,retract_length_swap);
#endif #endif//EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_feedrate); EEPROM_WRITE_VAR(i,retract_feedrate);
EEPROM_WRITE_VAR(i,retract_zlift); EEPROM_WRITE_VAR(i,retract_zlift);
EEPROM_WRITE_VAR(i,retract_recover_length); EEPROM_WRITE_VAR(i,retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_recover_length_swap); EEPROM_WRITE_VAR(i,retract_recover_length_swap);
#endif #endif//EXTRUDERS > 1
EEPROM_WRITE_VAR(i,retract_recover_feedrate); EEPROM_WRITE_VAR(i,retract_recover_feedrate);
#endif #endif//FWRETRACT
// Save filament sizes // Save filament sizes
EEPROM_WRITE_VAR(i, volumetric_enabled); EEPROM_WRITE_VAR(i, volumetric_enabled);
@ -115,8 +136,8 @@ void Config_StoreSettings()
EEPROM_WRITE_VAR(i, filament_size[1]); EEPROM_WRITE_VAR(i, filament_size[1]);
#if EXTRUDERS > 2 #if EXTRUDERS > 2
EEPROM_WRITE_VAR(i, filament_size[2]); EEPROM_WRITE_VAR(i, filament_size[2]);
#endif #endif//EXTRUDERS > 2
#endif #endif//EXTRUDERS > 1
char ver2[4]=EEPROM_VERSION; char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET; i=EEPROM_OFFSET;
@ -149,7 +170,7 @@ SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
SERIAL_ECHO_START; SERIAL_ECHO_START;
#endif #endif//SCARA
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]); SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
@ -206,16 +227,23 @@ SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHOPAIR(" R" ,delta_radius ); SERIAL_ECHOPAIR(" R" ,delta_radius );
SERIAL_ECHOPAIR(" S" ,delta_segments_per_second ); SERIAL_ECHOPAIR(" S" ,delta_segments_per_second );
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
#endif #endif//DELTA
#ifdef PIDTEMP #ifdef PIDTEMP
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("PID settings:"); SERIAL_ECHOLNPGM("PID settings:");
for (int e = 0; e < EXTRUDERS; e++)
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M301 P",Kp); SERIAL_ECHOPAIR(" M301 E", (long unsigned int)e);
SERIAL_ECHOPAIR(" I" ,unscalePID_i(Ki)); SERIAL_ECHOPAIR(" P", Kp[e]);
SERIAL_ECHOPAIR(" D" ,unscalePID_d(Kd)); SERIAL_ECHOPAIR(" I" ,unscalePID_i(Ki[e]));
SERIAL_ECHOPAIR(" D" ,unscalePID_d(Kd[e]));
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_ECHOPAIR(" C" ,Kc[e]);
#endif//PID_ADD_EXTRUSION_RATE
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
#endif }
#endif//PIDTEMP
#ifdef FWRETRACT #ifdef FWRETRACT
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)"); SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
@ -244,7 +272,7 @@ SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap); SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
#endif #endif//EXTRUDERS > 1
SERIAL_ECHO_START; SERIAL_ECHO_START;
if (volumetric_enabled) { if (volumetric_enabled) {
SERIAL_ECHOLNPGM("Filament settings:"); SERIAL_ECHOLNPGM("Filament settings:");
@ -259,14 +287,14 @@ SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]); SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
#endif #endif//EXTRUDERS > 2
#endif #endif//EXTRUDERS > 1
} else { } else {
SERIAL_ECHOLNPGM("Filament settings: Disabled"); SERIAL_ECHOLNPGM("Filament settings: Disabled");
} }
#endif #endif//FWRETRACT
} }
#endif #endif//DISABLE_M503
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
@ -301,11 +329,11 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i,delta_radius); EEPROM_READ_VAR(i,delta_radius);
EEPROM_READ_VAR(i,delta_diagonal_rod); EEPROM_READ_VAR(i,delta_diagonal_rod);
EEPROM_READ_VAR(i,delta_segments_per_second); EEPROM_READ_VAR(i,delta_segments_per_second);
#endif #endif//DELTA
#ifndef ULTIPANEL #ifndef ULTIPANEL
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed; int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed;
int absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed; int absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
#endif #endif//ULTIPANEL
EEPROM_READ_VAR(i,plaPreheatHotendTemp); EEPROM_READ_VAR(i,plaPreheatHotendTemp);
EEPROM_READ_VAR(i,plaPreheatHPBTemp); EEPROM_READ_VAR(i,plaPreheatHPBTemp);
EEPROM_READ_VAR(i,plaPreheatFanSpeed); EEPROM_READ_VAR(i,plaPreheatFanSpeed);
@ -313,35 +341,68 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i,absPreheatHPBTemp); EEPROM_READ_VAR(i,absPreheatHPBTemp);
EEPROM_READ_VAR(i,absPreheatFanSpeed); EEPROM_READ_VAR(i,absPreheatFanSpeed);
EEPROM_READ_VAR(i,zprobe_zoffset); EEPROM_READ_VAR(i,zprobe_zoffset);
#ifndef PIDTEMP #ifdef PIDTEMP
float Kp,Ki,Kd; float dummy = 0.0f;
#endif for (int e = 0; e < 3; e++) // 3 = max extruders supported by marlin
{
if (e < EXTRUDERS)
{
// do not need to scale PID values as the values in EEPROM are already scaled // do not need to scale PID values as the values in EEPROM are already scaled
EEPROM_READ_VAR(i,Kp); EEPROM_READ_VAR(i,Kp[e]);
EEPROM_READ_VAR(i,Ki); EEPROM_READ_VAR(i,Ki[e]);
EEPROM_READ_VAR(i,Kd); EEPROM_READ_VAR(i,Kd[e]);
#ifdef PID_ADD_EXTRUSION_RATE
EEPROM_READ_VAR(i,Kc[e]);
#else//PID_ADD_EXTRUSION_RATE
EEPROM_READ_VAR(i,dummy);
#endif//PID_ADD_EXTRUSION_RATE
}
else
{
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
}
}
#else//PIDTEMP
// 4 x 3 = 12 slots for PID parameters
float dummy = 0.0f;
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
EEPROM_READ_VAR(i,dummy);
#endif//PIDTEMP
#ifndef DOGLCD #ifndef DOGLCD
int lcd_contrast; int lcd_contrast;
#endif #endif//DOGLCD
EEPROM_READ_VAR(i,lcd_contrast); EEPROM_READ_VAR(i,lcd_contrast);
#ifdef SCARA #ifdef SCARA
EEPROM_READ_VAR(i,axis_scaling); EEPROM_READ_VAR(i,axis_scaling);
#endif #endif//SCARA
#ifdef FWRETRACT #ifdef FWRETRACT
EEPROM_READ_VAR(i,autoretract_enabled); EEPROM_READ_VAR(i,autoretract_enabled);
EEPROM_READ_VAR(i,retract_length); EEPROM_READ_VAR(i,retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_length_swap); EEPROM_READ_VAR(i,retract_length_swap);
#endif #endif//EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_feedrate); EEPROM_READ_VAR(i,retract_feedrate);
EEPROM_READ_VAR(i,retract_zlift); EEPROM_READ_VAR(i,retract_zlift);
EEPROM_READ_VAR(i,retract_recover_length); EEPROM_READ_VAR(i,retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_recover_length_swap); EEPROM_READ_VAR(i,retract_recover_length_swap);
#endif #endif//EXTRUDERS > 1
EEPROM_READ_VAR(i,retract_recover_feedrate); EEPROM_READ_VAR(i,retract_recover_feedrate);
#endif #endif//FWRETRACT
EEPROM_READ_VAR(i, volumetric_enabled); EEPROM_READ_VAR(i, volumetric_enabled);
EEPROM_READ_VAR(i, filament_size[0]); EEPROM_READ_VAR(i, filament_size[0]);
@ -349,8 +410,8 @@ void Config_RetrieveSettings()
EEPROM_READ_VAR(i, filament_size[1]); EEPROM_READ_VAR(i, filament_size[1]);
#if EXTRUDERS > 2 #if EXTRUDERS > 2
EEPROM_READ_VAR(i, filament_size[2]); EEPROM_READ_VAR(i, filament_size[2]);
#endif #endif//EXTRUDERS > 2
#endif #endif//EXTRUDERS > 1
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
// Call updatePID (similar to when we have processed M301) // Call updatePID (similar to when we have processed M301)
updatePID(); updatePID();
@ -363,9 +424,9 @@ void Config_RetrieveSettings()
} }
#ifdef EEPROM_CHITCHAT #ifdef EEPROM_CHITCHAT
Config_PrintSettings(); Config_PrintSettings();
#endif #endif//EEPROM_CHITCHAT
} }
#endif #endif//EEPROM_SETTINGS
void Config_ResetDefault() void Config_ResetDefault()
{ {
@ -379,7 +440,7 @@ void Config_ResetDefault()
max_acceleration_units_per_sq_second[i]=tmp3[i]; max_acceleration_units_per_sq_second[i]=tmp3[i];
#ifdef SCARA #ifdef SCARA
axis_scaling[i]=1; axis_scaling[i]=1;
#endif #endif//SCARA
} }
// steps per sq second need to be updated to agree with the units per sq second // steps per sq second need to be updated to agree with the units per sq second
@ -400,7 +461,7 @@ void Config_ResetDefault()
delta_diagonal_rod= DELTA_DIAGONAL_ROD; delta_diagonal_rod= DELTA_DIAGONAL_ROD;
delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND; delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif #endif//DELTA
#ifdef ULTIPANEL #ifdef ULTIPANEL
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP; plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP; plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
@ -408,24 +469,25 @@ void Config_ResetDefault()
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP; absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP; absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED; absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif #endif//ULTIPANEL
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER; zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif #endif//ENABLE_AUTO_BED_LEVELING
#ifdef DOGLCD #ifdef DOGLCD
lcd_contrast = DEFAULT_LCD_CONTRAST; lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif #endif//DOGLCD
#ifdef PIDTEMP #ifdef PIDTEMP
Kp = DEFAULT_Kp; for (int e = 0; e < EXTRUDERS; e++)
Ki = scalePID_i(DEFAULT_Ki); {
Kd = scalePID_d(DEFAULT_Kd); Kp[e] = DEFAULT_Kp;
Ki[e] = scalePID_i(DEFAULT_Ki);
// call updatePID (similar to when we have processed M301) Kd[e] = scalePID_d(DEFAULT_Kd);
updatePID();
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
Kc = DEFAULT_Kc; Kc[e] = DEFAULT_Kc;
#endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
}
// call updatePID (similar to when we have processed M301)
updatePID();
#endif//PIDTEMP #endif//PIDTEMP
#ifdef FWRETRACT #ifdef FWRETRACT
@ -433,15 +495,15 @@ void Config_ResetDefault()
retract_length = RETRACT_LENGTH; retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP; retract_length_swap = RETRACT_LENGTH_SWAP;
#endif #endif//EXTRUDERS > 1
retract_feedrate = RETRACT_FEEDRATE; retract_feedrate = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT; retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH; retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif #endif//EXTRUDERS > 1
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif #endif//FWRETRACT
volumetric_enabled = false; volumetric_enabled = false;
filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
@ -449,8 +511,8 @@ void Config_ResetDefault()
filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 2 #if EXTRUDERS > 2
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA; filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif #endif//EXTRUDERS > 2
#endif #endif//EXTRUDERS > 1
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
SERIAL_ECHO_START; SERIAL_ECHO_START;

@ -3198,28 +3198,48 @@ Sigma_Exit:
#ifdef PIDTEMP #ifdef PIDTEMP
case 301: // M301 case 301: // M301
{ {
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = scalePID_i(code_value());
if(code_seen('D')) Kd = scalePID_d(code_value());
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
int e = 0; // extruder being updated
if (code_seen('E'))
{
e = (int)code_value();
}
if (e < EXTRUDERS) // catch bad input value
{
if (code_seen('P')) Kp[e] = code_value();
if (code_seen('I')) Ki[e] = scalePID_i(code_value());
if (code_seen('D')) Kd[e] = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
if(code_seen('C')) Kc = code_value(); if (code_seen('C')) Kc[e] = code_value();
#endif #endif
updatePID(); updatePID();
SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp); SERIAL_PROTOCOL(Kp[e]);
SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(Ki)); SERIAL_PROTOCOL(unscalePID_i(Ki[e]));
SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(Kd)); SERIAL_PROTOCOL(unscalePID_d(Kd[e]));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:"); SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults //Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(Kc); SERIAL_PROTOCOL(Kc[e]);
#endif #endif
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
} }
break; break;
#endif //PIDTEMP #endif //PIDTEMP

@ -50,14 +50,6 @@ float current_temperature_bed = 0.0;
int redundant_temperature_raw = 0; int redundant_temperature_raw = 0;
float redundant_temperature = 0.0; float redundant_temperature = 0.0;
#endif #endif
#ifdef PIDTEMP
float Kp=DEFAULT_Kp;
float Ki=(DEFAULT_Ki*PID_dT);
float Kd=(DEFAULT_Kd/PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE
float Kc=DEFAULT_Kc;
#endif
#endif //PIDTEMP
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
float bedKp=DEFAULT_bedKp; float bedKp=DEFAULT_bedKp;
@ -133,6 +125,15 @@ static volatile bool temp_meas_ready = false;
# define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 } # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
#endif #endif
#ifdef PIDTEMP
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
#endif
#endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup // Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP ); static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP ); static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
@ -342,7 +343,7 @@ void updatePID()
{ {
#ifdef PIDTEMP #ifdef PIDTEMP
for(int e = 0; e < EXTRUDERS; e++) { for(int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki[e];
} }
#endif #endif
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
@ -463,14 +464,14 @@ void manage_heater()
temp_iState[e] = 0.0; temp_iState[e] = 0.0;
pid_reset[e] = false; pid_reset[e] = false;
} }
pTerm[e] = Kp * pid_error[e]; pTerm[e] = Kp[e] * pid_error[e];
temp_iState[e] += pid_error[e]; temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = Ki * temp_iState[e]; iTerm[e] = Ki[e] * temp_iState[e];
//K1 defined in Configuration.h in the PID settings //K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); dTerm[e] = (Kd[e] * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) { if (pid_output > PID_MAX) {
if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
@ -810,7 +811,7 @@ void tp_init()
maxttemp[e] = maxttemp[0]; maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP #ifdef PIDTEMP
temp_iState_min[e] = 0.0; temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki; temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki[e];
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
temp_iState_min_bed = 0.0; temp_iState_min_bed = 0.0;

@ -58,7 +58,7 @@ extern float current_temperature_bed;
#endif #endif
#ifdef PIDTEMP #ifdef PIDTEMP
extern float Kp,Ki,Kd,Kc; extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS];
float scalePID_i(float i); float scalePID_i(float i);
float scalePID_d(float d); float scalePID_d(float d);
float unscalePID_i(float i); float unscalePID_i(float i);

Loading…
Cancel
Save