Add PROBE_MANUALLY support to G33

master
LVD-AC 7 years ago committed by Scott Lahteine
parent 28deff01b8
commit 3efe4aeef8

@ -5127,6 +5127,10 @@ void home_all_axes() { gcode_G28(true); }
#endif // Z_PROBE_SLED #endif // Z_PROBE_SLED
#endif // HAS_BED_PROBE
#if PROBE_SELECTED
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
/** /**
* G33 - Delta '1-4-7-point' Auto-Calibration * G33 - Delta '1-4-7-point' Auto-Calibration
@ -5184,9 +5188,9 @@ void home_all_axes() { gcode_G28(true); }
return; return;
} }
const int8_t force_iterations = parser.intval('F', 1); const int8_t force_iterations = parser.intval('F', 0);
if (!WITHIN(force_iterations, 1, 30)) { if (!WITHIN(force_iterations, 0, 30)) {
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (1-30)."); SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
return; return;
} }
@ -5221,7 +5225,7 @@ void home_all_axes() { gcode_G28(true); }
alpha_old = delta_tower_angle_trim[A_AXIS], alpha_old = delta_tower_angle_trim[A_AXIS],
beta_old = delta_tower_angle_trim[B_AXIS]; beta_old = delta_tower_angle_trim[B_AXIS];
if (!_1p_calibration) { // test if the outer radius is reachable if (!_1p_calibration) { // test if the outer radius is reachable
const float circles = (_7p_quadruple_circle ? 1.5 : const float circles = (_7p_quadruple_circle ? 1.5 :
_7p_triple_circle ? 1.0 : _7p_triple_circle ? 1.0 :
_7p_double_circle ? 0.5 : 0), _7p_double_circle ? 0.5 : 0),
@ -5273,7 +5277,9 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_EOL(); SERIAL_EOL();
} }
home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height #if DISABLED(PROBE_MANUALLY)
home_offset[Z_AXIS] -= probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
#endif
do { do {
@ -5286,12 +5292,20 @@ void home_all_axes() { gcode_G28(true); }
// Probe the points // Probe the points
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); #if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(0, 0);
#else
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
#endif
} }
if (_7p_calibration) { // probe extra center points if (_7p_calibration) { // probe extra center points
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false); #if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
#endif
} }
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
} }
@ -5307,7 +5321,11 @@ void home_all_axes() { gcode_G28(true); }
for (float circles = -offset_circles ; circles <= offset_circles; circles++) { for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
const float a = RADIANS(180 + 30 * axis), const float a = RADIANS(180 + 30 * axis),
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false); #if ENABLED(PROBE_MANUALLY)
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false);
#endif
} }
zig_zag = !zig_zag; zig_zag = !zig_zag;
z_at_pt[axis] /= (2 * offset_circles + 1); z_at_pt[axis] /= (2 * offset_circles + 1);
@ -5359,9 +5377,13 @@ void home_all_axes() { gcode_G28(true); }
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I) #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I) #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
#if ENABLED(PROBE_MANUALLY)
test_precision = 0.00; // forced end
#endif
switch (probe_points) { switch (probe_points) {
case 1: case 1:
test_precision = 0.00; test_precision = 0.00; // forced end
LOOP_XYZ(i) e_delta[i] = Z1000(0); LOOP_XYZ(i) e_delta[i] = Z1000(0);
break; break;
@ -5437,16 +5459,19 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_EOL(); SERIAL_EOL();
} }
} }
if (test_precision != 0.0) { // !forced end if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK"); SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(36); SERIAL_PROTOCOL_SP(36);
if (zero_std_dev >= test_precision) #if DISABLED(PROBE_MANUALLY)
SERIAL_PROTOCOLPGM("rolling back."); if (zero_std_dev >= test_precision && !_1p_calibration)
else { SERIAL_PROTOCOLPGM("rolling back.");
SERIAL_PROTOCOLPGM("std dev:"); else
SERIAL_PROTOCOL_F(zero_std_dev, 3); #endif
} {
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
}
SERIAL_EOL(); SERIAL_EOL();
LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
} }
@ -5480,22 +5505,12 @@ void home_all_axes() { gcode_G28(true); }
serialprintPGM(save_message); serialprintPGM(save_message);
SERIAL_EOL(); SERIAL_EOL();
} }
else { // forced end else { // dry run
if (verbose_level == 0) { SERIAL_PROTOCOLPGM("End DRY-RUN");
SERIAL_PROTOCOLPGM("End DRY-RUN"); SERIAL_PROTOCOL_SP(39);
SERIAL_PROTOCOL_SP(39); SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL();
SERIAL_EOL();
}
else {
SERIAL_PROTOCOLLNPGM("Calibration OK");
LCD_MESSAGEPGM("Calibration OK"); // TODO: Make translatable string
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
SERIAL_EOL();
serialprintPGM(save_message);
SERIAL_EOL();
}
} }
endstops.enable(true); endstops.enable(true);
@ -5517,7 +5532,7 @@ void home_all_axes() { gcode_G28(true); }
#endif // DELTA_AUTO_CALIBRATION #endif // DELTA_AUTO_CALIBRATION
#endif // HAS_BED_PROBE #endif // PROBE_SELECTED
#if ENABLED(G38_PROBE_TARGET) #if ENABLED(G38_PROBE_TARGET)
@ -10493,6 +10508,10 @@ void process_next_command() {
#endif // Z_PROBE_SLED #endif // Z_PROBE_SLED
#endif // HAS_BED_PROBE
#if PROBE_SELECTED
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
case 33: // G33: Delta Auto-Calibration case 33: // G33: Delta Auto-Calibration
@ -10501,7 +10520,7 @@ void process_next_command() {
#endif // DELTA_AUTO_CALIBRATION #endif // DELTA_AUTO_CALIBRATION
#endif // HAS_BED_PROBE #endif // PROBE_SELECTED
#if ENABLED(G38_PROBE_TARGET) #if ENABLED(G38_PROBE_TARGET)
case 38: // G38.2 & G38.3 case 38: // G38.2 & G38.3

@ -480,8 +480,10 @@ static_assert(1 >= 0
#error "You probably want to use Max Endstops for DELTA!" #error "You probably want to use Max Endstops for DELTA!"
#elif ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_BILINEAR) && !UBL_DELTA #elif ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_BILINEAR) && !UBL_DELTA
#error "ENABLE_LEVELING_FADE_HEIGHT on DELTA requires AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL." #error "ENABLE_LEVELING_FADE_HEIGHT on DELTA requires AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL."
#elif ENABLED(DELTA_AUTO_CALIBRATION) && !HAS_BED_PROBE #elif ENABLED(DELTA_AUTO_CALIBRATION) && !PROBE_SELECTED
#error "DELTA_AUTO_CALIBRATION requires a probe: FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, or Z Servo." #error "DELTA_AUTO_CALIBRATION requires a probe: PROBE_MANUALLY, FIX_MOUNTED_PROBE, BLTOUCH, SOLENOID_PROBE, Z_PROBE_ALLEN_KEY, Z_PROBE_SLED, Z Servo."
#elif ENABLED(DELTA_AUTO_CALIBRATION) && ENABLED(PROBE_MANUALLY) && DISABLED(ULTIPANEL)
#error "DELTA_AUTO_CALIBRATION requires an LCD controller with PROBE_MANUALLY."
#elif ABL_GRID #elif ABL_GRID
#if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0 #if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0
#error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers." #error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers."

@ -2486,31 +2486,37 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(_lcd_calibrate_homing); lcd_goto_screen(_lcd_calibrate_homing);
} }
// Move directly to the tower position with uninterpolated moves void _man_probe_pt(const float &lx, const float &ly) {
// If we used interpolated moves it would cause this to become re-entrant
void _goto_tower_pos(const float &a) {
#if HAS_LEVELING #if HAS_LEVELING
reset_bed_level(); // After calibration bed-level data is no longer valid reset_bed_level(); // After calibration bed-level data is no longer valid
#endif #endif
line_to_z(max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5); float z_dest = LOGICAL_Z_POSITION((Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5);
line_to_z(z_dest);
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : cos(RADIANS(a)) * delta_calibration_radius; current_position[X_AXIS] = LOGICAL_X_POSITION(lx);
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : sin(RADIANS(a)) * delta_calibration_radius; current_position[Y_AXIS] = LOGICAL_Y_POSITION(ly);
line_to_current_z(); line_to_current_z();
z_dest = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
line_to_z(4.0); line_to_z(z_dest);
lcd_synchronize(); lcd_synchronize();
move_menu_scale = 0.1; move_menu_scale = 0.1;
lcd_goto_screen(lcd_move_z); lcd_goto_screen(lcd_move_z);
} }
void _goto_tower_x() { _goto_tower_pos(210); } float lcd_probe_pt(const float &lx, const float &ly) {
void _goto_tower_y() { _goto_tower_pos(330); } _man_probe_pt(lx, ly);
void _goto_tower_z() { _goto_tower_pos(90); } KEEPALIVE_STATE(PAUSED_FOR_USER);
void _goto_center() { _goto_tower_pos(-1); } wait_for_user = true;
while (wait_for_user) idle();
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS];
}
void _goto_tower_x() { _man_probe_pt(cos(RADIANS(210)) * delta_calibration_radius, sin(RADIANS(210)) * delta_calibration_radius); }
void _goto_tower_y() { _man_probe_pt(cos(RADIANS(330)) * delta_calibration_radius, sin(RADIANS(330)) * delta_calibration_radius); }
void _goto_tower_z() { _man_probe_pt(cos(RADIANS( 90)) * delta_calibration_radius, sin(RADIANS( 90)) * delta_calibration_radius); }
void _goto_center() { _man_probe_pt(0,0); }
void lcd_delta_calibrate_menu() { void lcd_delta_calibrate_menu() {
START_MENU(); START_MENU();

@ -197,4 +197,8 @@ void lcd_reset_status();
float lcd_z_offset_edit(); float lcd_z_offset_edit();
#endif #endif
#if ENABLED(DELTA_CALIBRATION_MENU)
float lcd_probe_pt(const float &lx, const float &ly);
#endif
#endif // ULTRALCD_H #endif // ULTRALCD_H

Loading…
Cancel
Save