|
|
|
@ -42,22 +42,22 @@ class Temperature {
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
|
|
int current_temperature_raw[EXTRUDERS] = { 0 };
|
|
|
|
|
float current_temperature[EXTRUDERS] = { 0.0 };
|
|
|
|
|
int target_temperature[EXTRUDERS] = { 0 };
|
|
|
|
|
static int current_temperature_raw[EXTRUDERS];
|
|
|
|
|
static float current_temperature[EXTRUDERS];
|
|
|
|
|
static int target_temperature[EXTRUDERS];
|
|
|
|
|
|
|
|
|
|
int current_temperature_bed_raw = 0;
|
|
|
|
|
float current_temperature_bed = 0.0;
|
|
|
|
|
int target_temperature_bed = 0;
|
|
|
|
|
static int current_temperature_bed_raw;
|
|
|
|
|
static float current_temperature_bed;
|
|
|
|
|
static int target_temperature_bed;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
|
|
float redundant_temperature = 0.0;
|
|
|
|
|
static float redundant_temperature;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
unsigned char soft_pwm_bed;
|
|
|
|
|
static unsigned char soft_pwm_bed;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
|
|
|
unsigned char fanSpeedSoftPwm[FAN_COUNT];
|
|
|
|
|
static unsigned char fanSpeedSoftPwm[FAN_COUNT];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
|
|
|
|
@ -70,7 +70,7 @@ class Temperature {
|
|
|
|
|
|
|
|
|
|
static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS];
|
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
|
|
|
float Kc[EXTRUDERS];
|
|
|
|
|
static float Kc[EXTRUDERS];
|
|
|
|
|
#endif
|
|
|
|
|
#define PID_PARAM(param, e) Temperature::param[e]
|
|
|
|
|
|
|
|
|
@ -93,117 +93,109 @@ class Temperature {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
float bedKp = DEFAULT_bedKp,
|
|
|
|
|
bedKi = ((DEFAULT_bedKi) * PID_dT),
|
|
|
|
|
bedKd = ((DEFAULT_bedKd) / PID_dT);
|
|
|
|
|
static float bedKp, bedKi, bedKd;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
|
volatile int babystepsTodo[3] = { 0 };
|
|
|
|
|
static volatile int babystepsTodo[3];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
|
|
|
|
int watch_target_temp[EXTRUDERS] = { 0 };
|
|
|
|
|
millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
|
|
|
|
|
static int watch_target_temp[EXTRUDERS];
|
|
|
|
|
static millis_t watch_heater_next_ms[EXTRUDERS];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0
|
|
|
|
|
int watch_target_bed_temp = 0;
|
|
|
|
|
millis_t watch_bed_next_ms = 0;
|
|
|
|
|
static int watch_target_bed_temp;
|
|
|
|
|
static millis_t watch_bed_next_ms;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
|
|
|
float extrude_min_temp = EXTRUDE_MINTEMP;
|
|
|
|
|
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
|
|
|
|
|
static float extrude_min_temp;
|
|
|
|
|
static bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
|
|
|
|
|
#else
|
|
|
|
|
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
|
|
|
|
|
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
|
|
|
int redundant_temperature_raw = 0;
|
|
|
|
|
float redundant_temperature = 0.0;
|
|
|
|
|
static int redundant_temperature_raw;
|
|
|
|
|
static float redundant_temperature;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
volatile bool temp_meas_ready = false;
|
|
|
|
|
static volatile bool temp_meas_ready;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
float temp_iState[EXTRUDERS] = { 0 };
|
|
|
|
|
float temp_dState[EXTRUDERS] = { 0 };
|
|
|
|
|
float pTerm[EXTRUDERS];
|
|
|
|
|
float iTerm[EXTRUDERS];
|
|
|
|
|
float dTerm[EXTRUDERS];
|
|
|
|
|
static float temp_iState[EXTRUDERS];
|
|
|
|
|
static float temp_dState[EXTRUDERS];
|
|
|
|
|
static float pTerm[EXTRUDERS];
|
|
|
|
|
static float iTerm[EXTRUDERS];
|
|
|
|
|
static float dTerm[EXTRUDERS];
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
|
|
|
float cTerm[EXTRUDERS];
|
|
|
|
|
long last_position[EXTRUDERS];
|
|
|
|
|
long lpq[LPQ_MAX_LEN];
|
|
|
|
|
int lpq_ptr = 0;
|
|
|
|
|
static float cTerm[EXTRUDERS];
|
|
|
|
|
static long last_position[EXTRUDERS];
|
|
|
|
|
static long lpq[LPQ_MAX_LEN];
|
|
|
|
|
static int lpq_ptr;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
float pid_error[EXTRUDERS];
|
|
|
|
|
float temp_iState_min[EXTRUDERS];
|
|
|
|
|
float temp_iState_max[EXTRUDERS];
|
|
|
|
|
bool pid_reset[EXTRUDERS];
|
|
|
|
|
static float pid_error[EXTRUDERS];
|
|
|
|
|
static float temp_iState_min[EXTRUDERS];
|
|
|
|
|
static float temp_iState_max[EXTRUDERS];
|
|
|
|
|
static bool pid_reset[EXTRUDERS];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
float temp_iState_bed = { 0 };
|
|
|
|
|
float temp_dState_bed = { 0 };
|
|
|
|
|
float pTerm_bed;
|
|
|
|
|
float iTerm_bed;
|
|
|
|
|
float dTerm_bed;
|
|
|
|
|
float pid_error_bed;
|
|
|
|
|
float temp_iState_min_bed;
|
|
|
|
|
float temp_iState_max_bed;
|
|
|
|
|
static float temp_iState_bed;
|
|
|
|
|
static float temp_dState_bed;
|
|
|
|
|
static float pTerm_bed;
|
|
|
|
|
static float iTerm_bed;
|
|
|
|
|
static float dTerm_bed;
|
|
|
|
|
static float pid_error_bed;
|
|
|
|
|
static float temp_iState_min_bed;
|
|
|
|
|
static float temp_iState_max_bed;
|
|
|
|
|
#else
|
|
|
|
|
millis_t next_bed_check_ms;
|
|
|
|
|
static millis_t next_bed_check_ms;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
unsigned long raw_temp_value[4] = { 0 };
|
|
|
|
|
unsigned long raw_temp_bed_value = 0;
|
|
|
|
|
static unsigned long raw_temp_value[4];
|
|
|
|
|
static unsigned long raw_temp_bed_value;
|
|
|
|
|
|
|
|
|
|
// Init min and max temp with extreme values to prevent false errors during startup
|
|
|
|
|
int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
|
|
|
|
|
int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
|
|
|
|
|
int minttemp[EXTRUDERS] = { 0 };
|
|
|
|
|
int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
|
|
|
|
|
static int minttemp_raw[EXTRUDERS];
|
|
|
|
|
static int maxttemp_raw[EXTRUDERS];
|
|
|
|
|
static int minttemp[EXTRUDERS];
|
|
|
|
|
static int maxttemp[EXTRUDERS];
|
|
|
|
|
|
|
|
|
|
#ifdef BED_MINTEMP
|
|
|
|
|
int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
|
|
|
|
|
static int bed_minttemp_raw;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef BED_MAXTEMP
|
|
|
|
|
int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
|
|
|
|
static int bed_maxttemp_raw;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
|
int meas_shift_index; // Index of a delayed sample in buffer
|
|
|
|
|
static int meas_shift_index; // Index of a delayed sample in buffer
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if HAS_AUTO_FAN
|
|
|
|
|
millis_t next_auto_fan_check_ms;
|
|
|
|
|
static millis_t next_auto_fan_check_ms;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
|
static unsigned char soft_pwm[EXTRUDERS];
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FAN_SOFT_PWM)
|
|
|
|
|
unsigned char soft_pwm_fan[FAN_COUNT];
|
|
|
|
|
static unsigned char soft_pwm_fan[FAN_COUNT];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
|
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
|
|
|
|
|
static int current_raw_filwidth; //Holds measured filament diameter - one extruder only
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Static (class) methods
|
|
|
|
|
*/
|
|
|
|
|
static float analog2temp(int raw, uint8_t e);
|
|
|
|
|
static float analog2tempBed(int raw);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Instance Methods
|
|
|
|
|
*/
|
|
|
|
@ -212,19 +204,25 @@ class Temperature {
|
|
|
|
|
|
|
|
|
|
void init();
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Static (class) methods
|
|
|
|
|
*/
|
|
|
|
|
static float analog2temp(int raw, uint8_t e);
|
|
|
|
|
static float analog2tempBed(int raw);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Called from the Temperature ISR
|
|
|
|
|
*/
|
|
|
|
|
void isr();
|
|
|
|
|
static void isr();
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Call periodically to manage heaters
|
|
|
|
|
*/
|
|
|
|
|
void manage_heater();
|
|
|
|
|
static void manage_heater();
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
|
float analog2widthFil(); // Convert raw Filament Width to millimeters
|
|
|
|
|
int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
|
|
|
|
|
static float analog2widthFil(); // Convert raw Filament Width to millimeters
|
|
|
|
|
static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -232,68 +230,68 @@ class Temperature {
|
|
|
|
|
//inline so that there is no performance decrease.
|
|
|
|
|
//deg=degreeCelsius
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
|
|
|
|
|
FORCE_INLINE float degBed() { return current_temperature_bed; }
|
|
|
|
|
static float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
|
|
|
|
|
static float degBed() { return current_temperature_bed; }
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
|
|
|
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
|
|
|
|
|
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
|
|
|
|
|
static float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
|
|
|
|
|
static float rawBedTemp() { return current_temperature_bed_raw; }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
|
|
|
|
|
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
|
|
|
|
|
static float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
|
|
|
|
|
static float degTargetBed() { return target_temperature_bed; }
|
|
|
|
|
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
|
|
|
|
void start_watching_heater(int e = 0);
|
|
|
|
|
static void start_watching_heater(int e = 0);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
|
|
|
|
|
void start_watching_bed();
|
|
|
|
|
static void start_watching_bed();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
|
|
|
|
|
static void setTargetHotend(const float& celsius, uint8_t extruder) {
|
|
|
|
|
target_temperature[extruder] = celsius;
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
|
|
|
|
start_watching_heater(extruder);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE void setTargetBed(const float& celsius) {
|
|
|
|
|
static void setTargetBed(const float& celsius) {
|
|
|
|
|
target_temperature_bed = celsius;
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
|
|
|
|
|
start_watching_bed();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
|
|
|
|
|
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
|
|
|
|
static bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
|
|
|
|
|
static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
|
|
|
|
|
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
|
|
|
|
static bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
|
|
|
|
|
static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* The software PWM power for a heater
|
|
|
|
|
*/
|
|
|
|
|
int getHeaterPower(int heater);
|
|
|
|
|
static int getHeaterPower(int heater);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Switch off all heaters, set all target temperatures to 0
|
|
|
|
|
*/
|
|
|
|
|
void disable_all_heaters();
|
|
|
|
|
static void disable_all_heaters();
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Perform auto-tuning for hotend or bed in response to M303
|
|
|
|
|
*/
|
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false);
|
|
|
|
|
static void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Update the temp manager when PID values change
|
|
|
|
|
*/
|
|
|
|
|
void updatePID();
|
|
|
|
|
static void updatePID();
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE void autotempShutdown() {
|
|
|
|
|
static void autotempShutdown() {
|
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
|
|
|
if (planner.autotemp_enabled) {
|
|
|
|
|
planner.autotemp_enabled = false;
|
|
|
|
@ -305,7 +303,7 @@ class Temperature {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE void babystep_axis(AxisEnum axis, int distance) {
|
|
|
|
|
static void babystep_axis(AxisEnum axis, int distance) {
|
|
|
|
|
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
|
|
|
|
#if ENABLED(BABYSTEP_XY)
|
|
|
|
|
switch (axis) {
|
|
|
|
@ -337,40 +335,40 @@ class Temperature {
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
|
|
void set_current_temp_raw();
|
|
|
|
|
static void set_current_temp_raw();
|
|
|
|
|
|
|
|
|
|
void updateTemperaturesFromRawValues();
|
|
|
|
|
static void updateTemperaturesFromRawValues();
|
|
|
|
|
|
|
|
|
|
#if ENABLED(HEATER_0_USES_MAX6675)
|
|
|
|
|
int read_max6675();
|
|
|
|
|
static int read_max6675();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void checkExtruderAutoFans();
|
|
|
|
|
static void checkExtruderAutoFans();
|
|
|
|
|
|
|
|
|
|
float get_pid_output(int e);
|
|
|
|
|
static float get_pid_output(int e);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
float get_pid_output_bed();
|
|
|
|
|
static float get_pid_output_bed();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
|
|
|
|
|
void min_temp_error(uint8_t e);
|
|
|
|
|
void max_temp_error(uint8_t e);
|
|
|
|
|
static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
|
|
|
|
|
static void min_temp_error(uint8_t e);
|
|
|
|
|
static void max_temp_error(uint8_t e);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
|
|
|
|
|
|
|
|
|
|
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
|
|
|
|
|
|
|
|
|
|
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
|
|
|
|
|
static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
|
|
|
TRState thermal_runaway_state_machine[EXTRUDERS] = { TRInactive };
|
|
|
|
|
millis_t thermal_runaway_timer[EXTRUDERS] = { 0 };
|
|
|
|
|
static TRState thermal_runaway_state_machine[EXTRUDERS];
|
|
|
|
|
static millis_t thermal_runaway_timer[EXTRUDERS];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if HAS_THERMALLY_PROTECTED_BED
|
|
|
|
|
TRState thermal_runaway_bed_state_machine = TRInactive;
|
|
|
|
|
millis_t thermal_runaway_bed_timer;
|
|
|
|
|
static TRState thermal_runaway_bed_state_machine;
|
|
|
|
|
static millis_t thermal_runaway_bed_timer;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif // THERMAL_PROTECTION
|
|
|
|
|