Merge pull request #1805 from thinkyhead/fixup_probing

Optimize coordinate copying, fix EXTRUDER_RUNOUT_PREVENT
master
Scott Lahteine 10 years ago
commit 41ded7e996

@ -503,7 +503,7 @@ const bool Z_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the logic
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -227,7 +227,7 @@ void enquecommands_P(const char *cmd); //put one or many ASCII commands at the e
void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]);
void refresh_cmd_timeout(void);
void refresh_cmd_timeout();
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val);

@ -290,4 +290,3 @@ MarlinSerial MSerial;
#if defined(AT90USB) && defined(BTENABLED)
HardwareSerial bt;
#endif

@ -1009,6 +1009,8 @@ inline void sync_plan_position() {
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
}
#endif
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
#ifdef ENABLE_AUTO_BED_LEVELING
@ -1020,7 +1022,7 @@ inline void sync_plan_position() {
refresh_cmd_timeout();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
set_current_to_destination();
}
#endif
@ -1564,7 +1566,7 @@ static void homeaxis(int axis) {
float oldFeedrate = feedrate;
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
set_destination_to_current();
if (retracting) {
@ -1769,7 +1771,7 @@ inline void gcode_G28() {
enable_endstops(true);
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
set_destination_to_current();
feedrate = 0.0;
@ -1997,7 +1999,7 @@ inline void gcode_G28() {
if (mbl_was_active) {
current_position[X_AXIS] = mbl.get_x(0);
current_position[Y_AXIS] = mbl.get_y(0);
for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
set_destination_to_current();
feedrate = homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
@ -2776,13 +2778,13 @@ inline void gcode_M42() {
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
// This is redudant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
// This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
#ifdef Z_PROBE_ENDSTOP
#if !HAS_Z_PROBE
#error "You must have a Z_PROBE_PIN defined in order to enable calculation of Z-Probe repeatability."
#error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
#endif
#elif !HAS_Z_MIN
#error "You must have a Z_MIN_PIN defined in order to enable calculation of Z-Probe repeatability."
#error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
#endif
/**
@ -4613,7 +4615,7 @@ inline void gcode_T() {
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
set_destination_to_current();
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
@ -5338,9 +5340,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
{
if (!mbl.active) {
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
return;
}
int pix = mbl.select_x_index(current_position[X_AXIS]);
@ -5354,9 +5354,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
if (pix == ix && piy == iy) {
// Start and end on same mesh square
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
return;
}
float nx, ny, ne, normalized_dist;
@ -5387,9 +5385,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
} else {
// Already split on a border
plan_buffer_line(x, y, z, e, feed_rate, extruder);
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
return;
}
// Do the split and look for more borders
@ -5478,10 +5474,8 @@ void prepare_move() {
#endif // DELTA
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked)
{
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
{
if (active_extruder_parked) {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
@ -5491,15 +5485,12 @@ void prepare_move() {
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
{
if (current_position[E_AXIS] == destination[E_AXIS])
{
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
if (current_position[E_AXIS] == destination[E_AXIS]) {
// this is a travel move - skit it but keep track of current position (so that it can later
// be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL)
{
memcpy(current_position, destination, sizeof(current_position));
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination();
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
@ -5522,7 +5513,8 @@ void prepare_move() {
// Do not use feedmultiply for E or Z only moves
if ( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
line_to_destination();
} else {
}
else {
#ifdef MESH_BED_LEVELING
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
return;
@ -5532,9 +5524,7 @@ void prepare_move() {
}
#endif // !(DELTA || SCARA)
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
}
void prepare_arc_move(char isclockwise) {
@ -5546,9 +5536,7 @@ void prepare_arc_move(char isclockwise) {
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
set_current_to_destination();
refresh_cmd_timeout();
}
@ -5718,7 +5706,16 @@ void disable_all_steppers() {
}
/**
*
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
*/
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
@ -5786,8 +5783,31 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#ifdef EXTRUDER_RUNOUT_PREVENT
if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus = E0_ENABLE_READ;
bool oldstatus;
switch(active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_e0();
break;
#if EXTRUDERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_e1();
break;
#if EXTRUDERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_e2();
break;
#if EXTRUDERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_e3();
break;
#endif
#endif
#endif
}
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
@ -5797,7 +5817,26 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
plan_set_e_position(oldepos);
previous_millis_cmd = ms; // refresh_cmd_timeout()
st_synchronize();
switch(active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
#endif
#endif
#endif
}
}
#endif
@ -5806,7 +5845,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
memcpy(destination, current_position, sizeof(destination));
set_destination_to_current();
prepare_move();
}
#endif

@ -123,7 +123,7 @@ class Servo {
int read(); // returns current pulse width as an angle between 0 and 180 degrees
int readMicroseconds(); // returns current pulse width in microseconds for this servo (was read_us() in first release)
bool attached(); // return true if this servo is attached, otherwise false
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
int pin; // store the hardware pin of the servo
#endif
private:

@ -523,7 +523,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -473,7 +473,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -473,7 +473,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -496,7 +496,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -501,7 +501,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -525,7 +525,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -495,7 +495,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -541,7 +541,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -545,7 +545,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -493,7 +493,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -495,7 +495,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// If you would like to use both a Z PROBE and a Z MIN endstop together or just a Z PROBE with a custom pin, uncomment #define Z_PROBE_ENDSTOP and read the instructions below.
// If you want to still use the Z min endstop for homing, disable Z_SAFE_HOMING above. Eg; to park the head outside the bed area when homing with G28.
// WARNING: The Z MIN endstop will need to set properly as it would without a Z PROBE to prevent head crashes and premature stopping during a print.
// To use a separte Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// To use a separate Z PROBE endstop, you must have a Z_PROBE_PIN defined in the pins.h file for your control board.
// If you are using a servo based Z PROBE, you will need to enable NUM_SERVOS, SERVO_ENDSTOPS and SERVO_ENDSTOPS_ANGLES in the R/C Servo below.
// RAMPS 1.3/1.4 boards may be able to use the 5V, Ground and the D32 pin in the Aux 4 section of the RAMPS board. Use 5V for powered sensors, otherwise connect to ground and D32
// for normally closed configuration and 5V and D32 for normally open configurations. Normally closed configuration is advised and assumed.

@ -220,8 +220,11 @@
#define Z_MIN_PIN -1
#endif
#define SENSITIVE_PINS { 0, 1, X_STEP_PIN, X_DIR_PIN, X_ENABLE_PIN, X_MIN_PIN, X_MAX_PIN, Y_STEP_PIN, Y_DIR_PIN, Y_ENABLE_PIN, Y_MIN_PIN, Y_MAX_PIN, Z_STEP_PIN, Z_DIR_PIN, Z_ENABLE_PIN, Z_MIN_PIN, Z_MAX_PIN, Z_PROBE_PIN, PS_ON_PIN, \
HEATER_BED_PIN, FAN_PIN, \
#define SENSITIVE_PINS { 0, 1, \
X_STEP_PIN, X_DIR_PIN, X_ENABLE_PIN, X_MIN_PIN, X_MAX_PIN, \
Y_STEP_PIN, Y_DIR_PIN, Y_ENABLE_PIN, Y_MIN_PIN, Y_MAX_PIN, \
Z_STEP_PIN, Z_DIR_PIN, Z_ENABLE_PIN, Z_MIN_PIN, Z_MAX_PIN, Z_PROBE_PIN, \
PS_ON_PIN, HEATER_BED_PIN, FAN_PIN, \
_E0_PINS _E1_PINS _E2_PINS _E3_PINS \
analogInputToDigitalPin(TEMP_BED_PIN) \
}

@ -62,12 +62,12 @@
#define FILWIDTH_PIN 5
#endif
#if defined(Z_PROBE_ENDSTOP)
#ifdef Z_PROBE_ENDSTOP
// Define a pin to use as the signal pin on Arduino for the Z_PROBE endstop.
#define Z_PROBE_PIN 32
#endif
#if defined(FILAMENT_RUNOUT_SENSOR)
#ifdef FILAMENT_RUNOUT_SENSOR
// define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector
#define FILRUNOUT_PIN 4
#endif

Loading…
Cancel
Save