Option to disable all volumetric extrusion

master
Scott Lahteine 6 years ago
parent e6f46f3832
commit 435981056e

@ -121,7 +121,7 @@ script:
- opt_enable NUM_SERVOS Z_ENDSTOP_SERVO_NR Z_SERVO_ANGLES DEACTIVATE_SERVOS_AFTER_MOVE - opt_enable NUM_SERVOS Z_ENDSTOP_SERVO_NR Z_SERVO_ANGLES DEACTIVATE_SERVOS_AFTER_MOVE
- opt_set NUM_SERVOS 1 - opt_set NUM_SERVOS 1
- opt_enable AUTO_BED_LEVELING_3POINT DEBUG_LEVELING_FEATURE EEPROM_SETTINGS EEPROM_CHITCHAT - opt_enable AUTO_BED_LEVELING_3POINT DEBUG_LEVELING_FEATURE EEPROM_SETTINGS EEPROM_CHITCHAT
- opt_enable_adv EXTENDED_CAPABILITIES_REPORT AUTO_REPORT_TEMPERATURES AUTOTEMP G38_PROBE_TARGET - opt_enable_adv NO_VOLUMETRICS EXTENDED_CAPABILITIES_REPORT AUTO_REPORT_TEMPERATURES AUTOTEMP G38_PROBE_TARGET
- build_marlin - build_marlin
# #
# Test MESH_BED_LEVELING feature, with LCD # Test MESH_BED_LEVELING feature, with LCD

@ -1376,13 +1376,20 @@
#define EXTENDED_CAPABILITIES_REPORT #define EXTENDED_CAPABILITIES_REPORT
/** /**
* Volumetric extrusion default state * Disable all Volumetric extrusion options
* Activate to make volumetric extrusion the default method,
* with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
*
* M200 D0 to disable, M200 Dn to set a new diameter.
*/ */
//#define VOLUMETRIC_DEFAULT_ON //#define NO_VOLUMETRICS
#if DISABLED(NO_VOLUMETRICS)
/**
* Volumetric extrusion default state
* Activate to make volumetric extrusion the default method,
* with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
*
* M200 D0 to disable, M200 Dn to set a new diameter.
*/
//#define VOLUMETRIC_DEFAULT_ON
#endif
/** /**
* Enable this option for a leaner build of Marlin that removes all * Enable this option for a leaner build of Marlin that removes all

@ -8669,25 +8669,29 @@ inline void gcode_M121() { endstops.enable_globally(false); }
#endif // HAS_COLOR_LEDS #endif // HAS_COLOR_LEDS
/** #if DISABLED(NO_VOLUMETRICS)
* M200: Set filament diameter and set E axis units to cubic units
* /**
* T<extruder> - Optional extruder number. Current extruder if omitted. * M200: Set filament diameter and set E axis units to cubic units
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis. *
*/ * T<extruder> - Optional extruder number. Current extruder if omitted.
inline void gcode_M200() { * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
*/
inline void gcode_M200() {
if (get_target_extruder_from_command(200)) return; if (get_target_extruder_from_command(200)) return;
if (parser.seen('D')) { if (parser.seen('D')) {
// setting any extruder filament size disables volumetric on the assumption that // setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds // slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders // for all extruders
if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) ) if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) )
planner.set_filament_size(target_extruder, parser.value_linear_units()); planner.set_filament_size(target_extruder, parser.value_linear_units());
}
planner.calculate_volumetric_multipliers();
} }
planner.calculate_volumetric_multipliers();
} #endif // !NO_VOLUMETRICS
/** /**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
@ -12036,9 +12040,12 @@ void process_parsed_command() {
#endif #endif
#endif #endif
case 200: // M200: Set filament diameter, E to cubic units #if DISABLED(NO_VOLUMETRICS)
gcode_M200(); case 200: // M200: Set filament diameter, E to cubic units
break; gcode_M200();
break;
#endif
case 201: // M201: Set max acceleration for print moves (units/s^2) case 201: // M201: Set max acceleration for print moves (units/s^2)
gcode_M201(); gcode_M201();
break; break;

@ -901,8 +901,12 @@ static_assert(1 >= 0
/** /**
* Filament Width Sensor * Filament Width Sensor
*/ */
#if ENABLED(FILAMENT_WIDTH_SENSOR) && !HAS_FILAMENT_WIDTH_SENSOR #if ENABLED(FILAMENT_WIDTH_SENSOR)
#error "FILAMENT_WIDTH_SENSOR requires a FILWIDTH_PIN to be defined." #if !HAS_FILAMENT_WIDTH_SENSOR
#error "FILAMENT_WIDTH_SENSOR requires a FILWIDTH_PIN to be defined."
#elif ENABLED(NO_VOLUMETRICS)
#error "FILAMENT_WIDTH_SENSOR requires NO_VOLUMETRICS to be disabled."
#endif
#endif #endif
/** /**

@ -238,7 +238,9 @@ void MarlinSettings::postprocess() {
thermalManager.updatePID(); thermalManager.updatePID();
#endif #endif
planner.calculate_volumetric_multipliers(); #if DISABLED(NO_VOLUMETRICS)
planner.calculate_volumetric_multipliers();
#endif
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE) #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
// Software endstops depend on home_offset // Software endstops depend on home_offset
@ -566,13 +568,20 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(swap_retract_recover_length); EEPROM_WRITE(swap_retract_recover_length);
EEPROM_WRITE(swap_retract_recover_feedrate_mm_s); EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
EEPROM_WRITE(parser.volumetric_enabled); //
// Volumetric & Filament Size
//
#if DISABLED(NO_VOLUMETRICS)
// Save filament sizes EEPROM_WRITE(parser.volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q]; // Save filament sizes
EEPROM_WRITE(dummy); for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
} if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
EEPROM_WRITE(dummy);
}
#endif // !NO_VOLUMETRICS
// Save TMC2130 or TMC2208 Configuration, and placeholder values // Save TMC2130 or TMC2208 Configuration, and placeholder values
uint16_t val; uint16_t val;
@ -1053,12 +1062,16 @@ void MarlinSettings::postprocess() {
// //
// Volumetric & Filament Size // Volumetric & Filament Size
// //
#if DISABLED(NO_VOLUMETRICS)
EEPROM_READ(parser.volumetric_enabled); EEPROM_READ(parser.volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy); for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy; EEPROM_READ(dummy);
} if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
}
#endif
// //
// TMC2130 Stepper Current // TMC2130 Stepper Current
@ -1502,15 +1515,19 @@ void MarlinSettings::reset() {
swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP; swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
#endif // FWRETRACT #endif // FWRETRACT
parser.volumetric_enabled = #if DISABLED(NO_VOLUMETRICS)
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
true parser.volumetric_enabled =
#else #if ENABLED(VOLUMETRIC_DEFAULT_ON)
false true
#endif #else
; false
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++) #endif
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA; ;
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
endstops.enable_globally( endstops.enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
@ -1648,46 +1665,50 @@ void MarlinSettings::reset() {
SERIAL_EOL(); SERIAL_EOL();
/** #if DISABLED(NO_VOLUMETRICS)
* Volumetric extrusion M200
*/ /**
if (!forReplay) { * Volumetric extrusion M200
CONFIG_ECHO_START; */
SERIAL_ECHOPGM("Filament settings:"); if (!forReplay) {
if (parser.volumetric_enabled) CONFIG_ECHO_START;
SERIAL_EOL(); SERIAL_ECHOPGM("Filament settings:");
else if (parser.volumetric_enabled)
SERIAL_ECHOLNPGM(" Disabled"); SERIAL_EOL();
} else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
SERIAL_EOL();
#if EXTRUDERS > 1
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1])); SERIAL_ECHOPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 2 #if EXTRUDERS > 1
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2])); SERIAL_ECHOPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 3 #if EXTRUDERS > 2
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3])); SERIAL_ECHOPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
SERIAL_EOL(); SERIAL_EOL();
#if EXTRUDERS > 4 #if EXTRUDERS > 3
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4])); SERIAL_ECHOPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
SERIAL_EOL(); SERIAL_EOL();
#endif // EXTRUDERS > 4 #if EXTRUDERS > 4
#endif // EXTRUDERS > 3 CONFIG_ECHO_START;
#endif // EXTRUDERS > 2 SERIAL_ECHOPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
#endif // EXTRUDERS > 1 SERIAL_EOL();
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
if (!parser.volumetric_enabled) { if (!parser.volumetric_enabled) {
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0"); SERIAL_ECHOLNPGM(" M200 D0");
} }
#endif
if (!forReplay) { if (!forReplay) {
CONFIG_ECHO_START; CONFIG_ECHO_START;

@ -94,10 +94,13 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement float Planner::e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area #if DISABLED(NO_VOLUMETRICS)
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
#endif
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
@ -550,25 +553,29 @@ void Planner::check_axes_activity() {
#endif #endif
} }
/** #if DISABLED(NO_VOLUMETRICS)
* Get a volumetric multiplier from a filament diameter.
* This is the reciprocal of the circular cross-section area.
* Return 1.0 with volumetric off or a diameter of 0.0.
*/
inline float calculate_volumetric_multiplier(const float &diameter) {
return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
}
/** /**
* Convert the filament sizes into volumetric multipliers. * Get a volumetric multiplier from a filament diameter.
* The multiplier converts a given E value into a length. * This is the reciprocal of the circular cross-section area.
*/ * Return 1.0 with volumetric off or a diameter of 0.0.
void Planner::calculate_volumetric_multipliers() { */
for (uint8_t i = 0; i < COUNT(filament_size); i++) { inline float calculate_volumetric_multiplier(const float &diameter) {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
refresh_e_factor(i);
} }
}
/**
* Convert the filament sizes into volumetric multipliers.
* The multiplier converts a given E value into a length.
*/
void Planner::calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
refresh_e_factor(i);
}
}
#endif // !NO_VOLUMETRICS
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
/** /**

@ -155,11 +155,14 @@ class Planner {
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
volumetric_area_nominal, // Nominal cross-sectional area #if DISABLED(NO_VOLUMETRICS)
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
// May be auto-adjusted by a filament width sensor volumetric_area_nominal, // Nominal cross-sectional area
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor
#endif
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
axis_steps_per_mm[XYZE_N], axis_steps_per_mm[XYZE_N],
@ -273,7 +276,11 @@ class Planner {
static void refresh_positioning(); static void refresh_positioning();
FORCE_INLINE static void refresh_e_factor(const uint8_t e) { FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
e_factor[e] = volumetric_multiplier[e] * flow_percentage[e] * 0.01; e_factor[e] = (flow_percentage[e] * 0.01
#if DISABLED(NO_VOLUMETRICS)
* volumetric_multiplier[e]
#endif
);
} }
// Manage fans, paste pressure, etc. // Manage fans, paste pressure, etc.
@ -293,12 +300,16 @@ class Planner {
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio); void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
#endif #endif
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) { #if DISABLED(NO_VOLUMETRICS)
filament_size[e] = v;
// make sure all extruders have some sane value for the filament size FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
for (uint8_t i = 0; i < COUNT(filament_size); i++) filament_size[e] = v;
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; // make sure all extruders have some sane value for the filament size
} for (uint8_t i = 0; i < COUNT(filament_size); i++)
if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)

Loading…
Cancel
Save