Merge pull request #676 from IVI053/Marlin_v1

Minor improvements for encoder configuration, LCD entry for PSU controll and thermistor pins on RAMPS
master
ErikZalm 11 years ago
commit 46d2443c7d

@ -8,9 +8,9 @@
//=========================================================================== //===========================================================================
//============================= DELTA Printer =============================== //============================= DELTA Printer ===============================
//=========================================================================== //===========================================================================
// For a Delta printer rplace the configuration files wilth the files in the // For a Delta printer rplace the configuration files wilth the files in the
// example_configurations/delta directory. // example_configurations/delta directory.
// //
// User-specified version info of this build to display in [Pronterface, etc] terminal window during // User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this // startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
@ -37,7 +37,7 @@
// 12 = Gen7 v1.3 // 12 = Gen7 v1.3
// 13 = Gen7 v1.4 // 13 = Gen7 v1.4
// 2 = Cheaptronic v1.0 // 2 = Cheaptronic v1.0
// 20 = Sethi 3D_1 // 20 = Sethi 3D_1
// 3 = MEGA/RAMPS up to 1.2 = 3 // 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed) // 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed) // 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
@ -336,9 +336,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance. #define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case // Be sure you have this distance over your Z_MAX_POS in case
#define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min #define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point. #define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points #define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
@ -347,26 +347,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it. //The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile. // You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300 // #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing, //If you have enabled the Bed Auto Levelling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!! //it is highly recommended you let this Z_SAFE_HOMING enabled!!!
#define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area. #define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will: // When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled // - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing // - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28) // - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area. // - Block Z homing only when the probe is outside bed area.
#ifdef Z_SAFE_HOMING #ifdef Z_SAFE_HOMING
#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28) #define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28) #define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)
#endif #endif
#endif #endif
@ -435,6 +435,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define SDSUPPORT // Enable SD Card Support in Hardware Console //#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error) //#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder //#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the ultimaker online store. //#define ULTIMAKERCONTROLLER //as available from the ultimaker online store.
//#define ULTIPANEL //the ultipanel as on thingiverse //#define ULTIPANEL //the ultipanel as on thingiverse
@ -541,7 +542,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// Shift register panels // Shift register panels
// --------------------- // ---------------------
// 2 wire Non-latching LCD SR from: // 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD //#define SR_LCD
#ifdef SR_LCD #ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shiftregister #define SR_LCD_2W_NL // Non latching 2 wire shiftregister

@ -47,7 +47,7 @@
#ifdef BLINKM #ifdef BLINKM
#include "BlinkM.h" #include "BlinkM.h"
#include "Wire.h" #include "Wire.h"
#endif #endif
#if NUM_SERVOS > 0 #if NUM_SERVOS > 0
@ -96,7 +96,7 @@
// M29 - Stop SD write // M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g) // M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial // M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files): // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#" // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include). // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading // The '#' is necessary when calling from within sd files, as it stops buffer prereading
@ -226,7 +226,11 @@ int EtoPPressure=0;
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
bool powersupply = true; #ifdef PS_DEFAULT_OFF
bool powersupply = false;
#else
bool powersupply = true;
#endif
#endif #endif
#ifdef DELTA #ifdef DELTA
@ -415,7 +419,7 @@ void servo_init()
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY); delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach(); servos[servo_endstops[Z_AXIS]].detach();
#endif #endif
} }
@ -636,17 +640,17 @@ void get_command()
if(!card.sdprinting || serial_count!=0){ if(!card.sdprinting || serial_count!=0){
return; return;
} }
//'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
// if it occures, stop_buffering is triggered and the buffer is ran dry. // if it occures, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
static bool stop_buffering=false; static bool stop_buffering=false;
if(buflen==0) stop_buffering=false; if(buflen==0) stop_buffering=false;
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) { while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
int16_t n=card.get(); int16_t n=card.get();
serial_char = (char)n; serial_char = (char)n;
if(serial_char == '\n' || if(serial_char == '\n' ||
serial_char == '\r' || serial_char == '\r' ||
(serial_char == '#' && comment_mode == false) || (serial_char == '#' && comment_mode == false) ||
@ -671,7 +675,7 @@ void get_command()
} }
if(serial_char=='#') if(serial_char=='#')
stop_buffering=true; stop_buffering=true;
if(!serial_count) if(!serial_count)
{ {
comment_mode = false; //for new command comment_mode = false; //for new command
@ -743,13 +747,13 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#endif #endif
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1 #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
#endif #endif
#define DXC_FULL_CONTROL_MODE 0 #define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1 #define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2 #define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) { static float x_home_pos(int extruder) {
if (extruder == 0) if (extruder == 0)
return base_home_pos(X_AXIS) + add_homeing[X_AXIS]; return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
@ -767,12 +771,12 @@ static int x_home_dir(int extruder) {
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2 static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1 static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1 static unsigned long delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2 static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2 bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE #endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) { static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
@ -785,8 +789,8 @@ static void axis_is_at_home(int axis) {
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS]; min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS], max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset); max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return; return;
} }
@ -853,7 +857,7 @@ static void run_z_probe() {
st_synchronize(); st_synchronize();
// move back down slowly to find bed // move back down slowly to find bed
feedrate = homing_feedrate[Z_AXIS]/4; feedrate = homing_feedrate[Z_AXIS]/4;
zPosition -= home_retract_mm(Z_AXIS) * 2; zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -950,7 +954,7 @@ static void homeaxis(int axis) {
current_position[axis] = 0; current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
// Engage Servo endstop if enabled // Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS #ifdef SERVO_ENDSTOPS
@ -1008,7 +1012,7 @@ static void homeaxis(int axis) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
if (axis==Z_AXIS) retract_z_probe(); if (axis==Z_AXIS) retract_z_probe();
#endif #endif
} }
} }
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
@ -1082,7 +1086,7 @@ void process_commands()
destination[Y_AXIS]=current_position[Y_AXIS]; destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS]; destination[Z_AXIS]=current_position[Z_AXIS];
current_position[Z_AXIS]+=retract_zlift; current_position[Z_AXIS]+=retract_zlift;
destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length; destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
feedrate=retract_recover_feedrate; feedrate=retract_recover_feedrate;
retracted=false; retracted=false;
prepare_move(); prepare_move();
@ -1196,10 +1200,10 @@ void process_commands()
// reset state used by the different modes // reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0; delayed_move_time = 0;
active_extruder_parked = true; active_extruder_parked = true;
#else #else
HOMEAXIS(X); HOMEAXIS(X);
#endif #endif
} }
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
@ -1218,7 +1222,7 @@ void process_commands()
current_position[Y_AXIS]=code_value()+add_homeing[1]; current_position[Y_AXIS]=code_value()+add_homeing[1];
} }
} }
#if Z_HOME_DIR < 0 // If homing towards BED do Z last #if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING #ifndef Z_SAFE_HOMING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
@ -1230,14 +1234,14 @@ void process_commands()
#endif #endif
HOMEAXIS(Z); HOMEAXIS(Z);
} }
#else // Z Safe mode activated. #else // Z Safe mode activated.
if(home_all_axis) { if(home_all_axis) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED; feedrate = XY_TRAVEL_SPEED;
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
@ -1255,7 +1259,7 @@ void process_commands()
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) { && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS]; feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
@ -1275,8 +1279,8 @@ void process_commands()
#endif #endif
#endif #endif
if(code_seen(axis_codes[Z_AXIS])) { if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) { if(code_value_long() != 0) {
current_position[Z_AXIS]=code_value()+add_homeing[2]; current_position[Z_AXIS]=code_value()+add_homeing[2];
@ -1347,7 +1351,7 @@ void process_commands()
run_z_probe(); run_z_probe();
float z_at_xLeft_yFront = current_position[Z_AXIS]; float z_at_xLeft_yFront = current_position[Z_AXIS];
retract_z_probe(); retract_z_probe();
SERIAL_PROTOCOLPGM("Bed x: "); SERIAL_PROTOCOLPGM("Bed x: ");
SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION); SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
SERIAL_PROTOCOLPGM(" y: "); SERIAL_PROTOCOLPGM(" y: ");
@ -1365,7 +1369,7 @@ void process_commands()
run_z_probe(); run_z_probe();
float z_at_xRight_yFront = current_position[Z_AXIS]; float z_at_xRight_yFront = current_position[Z_AXIS];
retract_z_probe(); // Retract Z Servo endstop if available retract_z_probe(); // Retract Z Servo endstop if available
SERIAL_PROTOCOLPGM("Bed x: "); SERIAL_PROTOCOLPGM("Bed x: ");
SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION); SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
SERIAL_PROTOCOLPGM(" y: "); SERIAL_PROTOCOLPGM(" y: ");
@ -1378,10 +1382,10 @@ void process_commands()
set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack); set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
st_synchronize(); st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position. // The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected. // When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
@ -1393,11 +1397,11 @@ void process_commands()
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
break; break;
case 30: // G30 Single Z Probe case 30: // G30 Single Z Probe
{ {
engage_z_probe(); // Engage Z Servo endstop if available engage_z_probe(); // Engage Z Servo endstop if available
st_synchronize(); st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move(); setup_for_endstop_move();
@ -1548,14 +1552,14 @@ void process_commands()
card.removeFile(strchr_pointer + 4); card.removeFile(strchr_pointer + 4);
} }
break; break;
case 32: //M32 - Select file and start SD print case 32: //M32 - Select file and start SD print
{ {
if(card.sdprinting) { if(card.sdprinting) {
st_synchronize(); st_synchronize();
} }
starpos = (strchr(strchr_pointer + 4,'*')); starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL) if(namestartpos==NULL)
{ {
@ -1563,16 +1567,16 @@ void process_commands()
} }
else else
namestartpos++; //to skip the '!' namestartpos++; //to skip the '!'
if(starpos!=NULL) if(starpos!=NULL)
*(starpos-1)='\0'; *(starpos-1)='\0';
bool call_procedure=(code_seen('P')); bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos) if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK ) if( card.cardOK )
{ {
card.openFile(namestartpos,true,!call_procedure); card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S')) if(code_seen('S'))
@ -1645,7 +1649,7 @@ void process_commands()
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset); setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif #endif
setWatch(); setWatch();
break; break;
case 140: // M140 set bed temp case 140: // M140 set bed temp
@ -1701,7 +1705,7 @@ void process_commands()
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0); SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
} }
#endif #endif
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
return; return;
break; break;
@ -1719,14 +1723,14 @@ void process_commands()
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset); setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif #endif
CooldownNoWait = true; CooldownNoWait = true;
} else if (code_seen('R')) { } else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder); setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset); setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif #endif
CooldownNoWait = false; CooldownNoWait = false;
} }
#ifdef AUTOTEMP #ifdef AUTOTEMP
@ -1890,7 +1894,7 @@ void process_commands()
SET_OUTPUT(SUICIDE_PIN); SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH); WRITE(SUICIDE_PIN, HIGH);
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
powersupply = true; powersupply = true;
LCD_MESSAGEPGM(WELCOME_MSG); LCD_MESSAGEPGM(WELCOME_MSG);
@ -2047,18 +2051,18 @@ void process_commands()
#endif #endif
break; break;
//TODO: update for all axis, use for loop //TODO: update for all axis, use for loop
#ifdef BLINKM #ifdef BLINKM
case 150: // M150 case 150: // M150
{ {
byte red; byte red;
byte grn; byte grn;
byte blu; byte blu;
if(code_seen('R')) red = code_value(); if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value(); if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value(); if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu); SendColors(red,grn,blu);
} }
break; break;
#endif //BLINKM #endif //BLINKM
@ -2180,7 +2184,7 @@ void process_commands()
{ {
extruder_offset[Z_AXIS][tmp_extruder] = code_value(); extruder_offset[Z_AXIS][tmp_extruder] = code_value();
} }
#endif #endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
@ -2213,17 +2217,17 @@ void process_commands()
} }
} }
break; break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{ {
if(code_seen('P')){ if(code_seen('P')){
int pin_number = code_value(); // pin number int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state if(code_seen('S')) pin_state = code_value(); // required pin state
if(pin_state >= -1 && pin_state <= 1){ if(pin_state >= -1 && pin_state <= 1){
for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
{ {
if (sensitive_pins[i] == pin_number) if (sensitive_pins[i] == pin_number)
@ -2232,28 +2236,28 @@ void process_commands()
break; break;
} }
} }
if (pin_number > -1) if (pin_number > -1)
{ {
st_synchronize(); st_synchronize();
pinMode(pin_number, INPUT); pinMode(pin_number, INPUT);
int target; int target;
switch(pin_state){ switch(pin_state){
case 1: case 1:
target = HIGH; target = HIGH;
break; break;
case 0: case 0:
target = LOW; target = LOW;
break; break;
case -1: case -1:
target = !digitalRead(pin_number); target = !digitalRead(pin_number);
break; break;
} }
while(digitalRead(pin_number) != target){ while(digitalRead(pin_number) != target){
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
@ -2263,7 +2267,7 @@ void process_commands()
} }
} }
} }
break; break;
#if NUM_SERVOS > 0 #if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
@ -2439,13 +2443,13 @@ void process_commands()
engage_z_probe(); // Engage Z Servo endstop if available engage_z_probe(); // Engage Z Servo endstop if available
} }
break; break;
case 402: case 402:
{ {
retract_z_probe(); // Retract Z Servo endstop if enabled retract_z_probe(); // Retract Z Servo endstop if enabled
} }
break; break;
#endif #endif
case 500: // M500 Store settings in EEPROM case 500: // M500 Store settings in EEPROM
{ {
Config_StoreSettings(); Config_StoreSettings();
@ -2603,14 +2607,14 @@ void process_commands()
// M605 S0: Full control mode. The slicer has full control over x-carriage movement // M605 S0: Full control mode. The slicer has full control over x-carriage movement
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
// millimeters x-offset and an optional differential hotend temperature of // millimeters x-offset and an optional differential hotend temperature of
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
// the first with a spacing of 100mm in the x direction and 2 degrees hotter. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
// //
// Note: the X axis should be homed after changing dual x-carriage mode. // Note: the X axis should be homed after changing dual x-carriage mode.
{ {
st_synchronize(); st_synchronize();
if (code_seen('S')) if (code_seen('S'))
dual_x_carriage_mode = code_value(); dual_x_carriage_mode = code_value();
@ -2621,7 +2625,7 @@ void process_commands()
if (code_seen('R')) if (code_seen('R'))
duplicate_extruder_temp_offset = code_value(); duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
@ -2637,13 +2641,13 @@ void process_commands()
{ {
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
} }
active_extruder_parked = false; active_extruder_parked = false;
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
delayed_move_time = 0; delayed_move_time = 0;
} }
break; break;
#endif //DUAL_X_CARRIAGE #endif //DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes. case 907: // M907 Set digital trimpot motor current using axis codes.
{ {
@ -2724,19 +2728,19 @@ void process_commands()
// Save current position to return to after applying extruder offset // Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination)); memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false && if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
{ {
// Park old head: 1) raise 2) move to park position 3) lower // Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder); current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS], plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize(); st_synchronize();
} }
// apply Y & Z extruder offset (x offset is already used in determining home pos) // apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] - current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] + extruder_offset[Y_AXIS][active_extruder] +
@ -2744,7 +2748,7 @@ void process_commands()
current_position[Z_AXIS] = current_position[Z_AXIS] - current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] + extruder_offset[Z_AXIS][active_extruder] +
extruder_offset[Z_AXIS][tmp_extruder]; extruder_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below. // This function resets the max/min values - the current position may be overwritten below.
@ -2752,18 +2756,18 @@ void process_commands()
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
{ {
current_position[X_AXIS] = inactive_extruder_x_pos; current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS]; inactive_extruder_x_pos = destination[X_AXIS];
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{ {
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked) if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos; current_position[X_AXIS] = inactive_extruder_x_pos;
else else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset; current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS]; inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
} }
else else
{ {
@ -2773,7 +2777,7 @@ void process_commands()
active_extruder_parked = true; active_extruder_parked = true;
delayed_move_time = 0; delayed_move_time = 0;
} }
#else #else
// Offset extruder (only by XY) // Offset extruder (only by XY)
int i; int i;
for(i = 0; i < 2; i++) { for(i = 0; i < 2; i++) {
@ -2986,13 +2990,13 @@ void prepare_move()
{ {
// move duplicate extruder into correct duplication position. // move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1); current_position[E_AXIS], max_feedrate[X_AXIS], 1);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
st_synchronize(); st_synchronize();
extruder_duplication_enabled = true; extruder_duplication_enabled = true;
active_extruder_parked = false; active_extruder_parked = false;
} }
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
{ {
if (current_position[E_AXIS] == destination[E_AXIS]) if (current_position[E_AXIS] == destination[E_AXIS])
@ -3001,7 +3005,7 @@ void prepare_move()
// be used as start of first non-travel move) // be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) if (delayed_move_time != 0xFFFFFFFFUL)
{ {
memcpy(current_position, destination, sizeof(current_position)); memcpy(current_position, destination, sizeof(current_position));
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS]) if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS]; raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis(); delayed_move_time = millis();
@ -3011,9 +3015,9 @@ void prepare_move()
delayed_move_time = 0; delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder); current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false; active_extruder_parked = false;
} }
@ -3179,7 +3183,7 @@ void manage_inactivity()
// travel moves have been received so enact them // travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
memcpy(destination,current_position,sizeof(destination)); memcpy(destination,current_position,sizeof(destination));
prepare_move(); prepare_move();
} }
#endif #endif
#ifdef TEMP_STAT_LEDS #ifdef TEMP_STAT_LEDS

@ -90,12 +90,16 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
#define ENCODER_FEEDRATE_DEADZONE 10 #define ENCODER_FEEDRATE_DEADZONE 10
#if !defined(LCD_I2C_VIKI) #if !defined(LCD_I2C_VIKI)
#define ENCODER_STEPS_PER_MENU_ITEM 5 #ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 5
#endif
#ifndef ENCODER_PULSES_PER_STEP #ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1 #define ENCODER_PULSES_PER_STEP 1
#endif #endif
#else #else
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation #ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 2 // VIKI LCD rotary encoder uses a different number of steps per rotation
#endif
#ifndef ENCODER_PULSES_PER_STEP #ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 1 #define ENCODER_PULSES_PER_STEP 1
#endif #endif
@ -207,7 +211,7 @@ static void lcd_status_screen()
else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE) else if (feedmultiply == 100 && int(encoderPosition) < -ENCODER_FEEDRATE_DEADZONE)
{ {
feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE; feedmultiply += int(encoderPosition) + ENCODER_FEEDRATE_DEADZONE;
encoderPosition = 0; encoderPosition = 0;
} }
else if (feedmultiply != 100) else if (feedmultiply != 100)
{ {
@ -407,7 +411,7 @@ static void lcd_tune_menu()
#endif #endif
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);
#ifdef BABYSTEPPING #ifdef BABYSTEPPING
#ifdef BABYSTEP_XY #ifdef BABYSTEP_XY
MENU_ITEM(submenu, "Babystep X", lcd_babystep_x); MENU_ITEM(submenu, "Babystep X", lcd_babystep_x);
@ -719,7 +723,7 @@ static void lcd_control_motion_menu()
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999);
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
MENU_ITEM_EDIT(bool, "Endstop abort", &abort_on_endstop_hit); MENU_ITEM_EDIT(bool, "Endstop abort", &abort_on_endstop_hit);
#endif #endif
@ -781,7 +785,7 @@ static void lcd_sd_updir()
void lcd_sdcard_menu() void lcd_sdcard_menu()
{ {
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
return; // nothing to do (so don't thrash the SD card) return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames(); uint16_t fileCnt = card.getnrfilenames();
START_MENU(); START_MENU();
@ -795,7 +799,7 @@ void lcd_sdcard_menu()
}else{ }else{
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir); MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
} }
for(uint16_t i=0;i<fileCnt;i++) for(uint16_t i=0;i<fileCnt;i++)
{ {
if (_menuItemNr == _lineNr) if (_menuItemNr == _lineNr)
@ -982,14 +986,14 @@ void lcd_init()
#ifdef NEWPANEL #ifdef NEWPANEL
pinMode(BTN_EN1,INPUT); pinMode(BTN_EN1,INPUT);
pinMode(BTN_EN2,INPUT); pinMode(BTN_EN2,INPUT);
pinMode(SDCARDDETECT,INPUT); pinMode(SDCARDDETECT,INPUT);
WRITE(BTN_EN1,HIGH); WRITE(BTN_EN1,HIGH);
WRITE(BTN_EN2,HIGH); WRITE(BTN_EN2,HIGH);
#if BTN_ENC > 0 #if BTN_ENC > 0
pinMode(BTN_ENC,INPUT); pinMode(BTN_ENC,INPUT);
WRITE(BTN_ENC,HIGH); WRITE(BTN_ENC,HIGH);
#endif #endif
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
pinMode(SHIFT_CLK,OUTPUT); pinMode(SHIFT_CLK,OUTPUT);
pinMode(SHIFT_LD,OUTPUT); pinMode(SHIFT_LD,OUTPUT);
@ -1007,9 +1011,9 @@ void lcd_init()
pinMode(SHIFT_EN,OUTPUT); pinMode(SHIFT_EN,OUTPUT);
pinMode(SHIFT_OUT,INPUT); pinMode(SHIFT_OUT,INPUT);
WRITE(SHIFT_OUT,HIGH); WRITE(SHIFT_OUT,HIGH);
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD,HIGH);
WRITE(SHIFT_EN,LOW); WRITE(SHIFT_EN,LOW);
#endif // SR_LCD_2W_NL #endif // SR_LCD_2W_NL
#endif//!NEWPANEL #endif//!NEWPANEL
#if (SDCARDDETECT > 0) #if (SDCARDDETECT > 0)
@ -1020,28 +1024,28 @@ void lcd_init()
slow_buttons = 0; slow_buttons = 0;
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
#ifdef ULTIPANEL #ifdef ULTIPANEL
encoderDiff = 0; encoderDiff = 0;
#endif #endif
} }
void lcd_update() void lcd_update()
{ {
static unsigned long timeoutToStatus = 0; static unsigned long timeoutToStatus = 0;
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
#if (SDCARDDETECT > 0) #if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus)) if((IS_SD_INSERTED != lcd_oldcardstatus))
{ {
lcdDrawUpdate = 2; lcdDrawUpdate = 2;
lcd_oldcardstatus = IS_SD_INSERTED; lcd_oldcardstatus = IS_SD_INSERTED;
lcd_implementation_init(); // to maybe revive the lcd if static electricty killed it. lcd_implementation_init(); // to maybe revive the lcd if static electricty killed it.
if(lcd_oldcardstatus) if(lcd_oldcardstatus)
{ {
card.initsd(); card.initsd();
@ -1054,7 +1058,7 @@ void lcd_update()
} }
} }
#endif//CARDINSERTED #endif//CARDINSERTED
if (lcd_next_update_millis < millis()) if (lcd_next_update_millis < millis())
{ {
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -1095,7 +1099,7 @@ void lcd_update()
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display #ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot blink++; // Variable for fan animation and alive dot
u8g.firstPage(); u8g.firstPage();
do do
{ {
u8g.setFont(u8g_font_6x10_marlin); u8g.setFont(u8g_font_6x10_marlin);
u8g.setPrintPos(125,0); u8g.setPrintPos(125,0);
@ -1105,7 +1109,7 @@ void lcd_update()
(*currentMenu)(); (*currentMenu)();
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next() if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while( u8g.nextPage() ); } while( u8g.nextPage() );
#else #else
(*currentMenu)(); (*currentMenu)();
#endif #endif
@ -1159,7 +1163,7 @@ void lcd_reset_alert_level()
void lcd_setcontrast(uint8_t value) void lcd_setcontrast(uint8_t value)
{ {
lcd_contrast = value & 63; lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast); u8g.setContrast(lcd_contrast);
} }
#endif #endif
@ -1199,7 +1203,7 @@ void lcd_buttons_update()
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD,HIGH);
unsigned char tmp_buttons=0; unsigned char tmp_buttons=0;
for(int8_t i=0;i<8;i++) for(int8_t i=0;i<8;i++)
{ {
newbutton = newbutton>>1; newbutton = newbutton>>1;
if(READ(SHIFT_OUT)) if(READ(SHIFT_OUT))
newbutton|=(1<<7); newbutton|=(1<<7);
@ -1249,14 +1253,14 @@ void lcd_buttons_update()
} }
void lcd_buzz(long duration, uint16_t freq) void lcd_buzz(long duration, uint16_t freq)
{ {
#ifdef LCD_USE_I2C_BUZZER #ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration,freq); lcd.buzz(duration,freq);
#endif #endif
} }
bool lcd_clicked() bool lcd_clicked()
{ {
return LCD_CLICKED; return LCD_CLICKED;
} }
#endif//ULTIPANEL #endif//ULTIPANEL

Loading…
Cancel
Save