Revert "[bugfix-1.1.x] COREXY stutter moves (planner.cpp changes) (#8697)"

This reverts commit 86b65e52c4.
master
Scott Lahteine 7 years ago
parent 1068798465
commit 477e36afab

@ -1065,6 +1065,9 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
CRITICAL_SECTION_END CRITICAL_SECTION_END
#endif #endif
block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
static float filwidth_e_count = 0, filwidth_delay_dist = 0; static float filwidth_e_count = 0, filwidth_delay_dist = 0;
@ -1099,14 +1102,10 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
} }
#endif #endif
// Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio // Calculate and limit speed in mm/sec for each axis
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
LOOP_XYZE(i) { LOOP_XYZE(i) {
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs)); const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
if (cs > max_jerk[i])
NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
NOLESS(max_stepper_speed, cs);
#if ENABLED(DISTINCT_E_FACTORS) #if ENABLED(DISTINCT_E_FACTORS)
if (i == E_AXIS) i += extruder; if (i == E_AXIS) i += extruder;
#endif #endif
@ -1151,9 +1150,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
} }
#endif // XY_FREQUENCY_LIMIT #endif // XY_FREQUENCY_LIMIT
block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
// Correct the speed // Correct the speed
if (speed_factor < 1.0) { if (speed_factor < 1.0) {
LOOP_XYZE(i) current_speed[i] *= speed_factor; LOOP_XYZE(i) current_speed[i] *= speed_factor;
@ -1161,9 +1157,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
block->nominal_rate *= speed_factor; block->nominal_rate *= speed_factor;
} }
float safe_speed = block->nominal_speed * min_axis_accel_ratio;
static float previous_safe_speed;
// Compute and limit the acceleration rate for the trapezoid generator. // Compute and limit the acceleration rate for the trapezoid generator.
const float steps_per_mm = block->step_event_count * inverse_millimeters; const float steps_per_mm = block->step_event_count * inverse_millimeters;
uint32_t accel; uint32_t accel;
@ -1265,6 +1258,32 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
} }
#endif #endif
/**
* Adapted from Průša MKS firmware
* https://github.com/prusa3d/Prusa-Firmware
*
* Start with a safe speed (from which the machine may halt to stop immediately).
*/
// Exit speed limited by a jerk to full halt of a previous last segment
static float previous_safe_speed;
float safe_speed = block->nominal_speed;
uint8_t limited = 0;
LOOP_XYZE(i) {
const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
if (jerk > maxj) {
if (limited) {
const float mjerk = maxj * block->nominal_speed;
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
}
else {
++limited;
safe_speed = maxj;
}
}
}
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
// Estimate a maximum velocity allowed at a joint of two successive segments. // Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
@ -1276,7 +1295,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1; float v_factor = 1;
uint8_t limited = 0; limited = 0;
// Now limit the jerk in all axes. // Now limit the jerk in all axes.
const float smaller_speed_factor = vmax_junction / previous_nominal_speed; const float smaller_speed_factor = vmax_junction / previous_nominal_speed;

Loading…
Cancel
Save