|
|
|
@ -36,13 +36,13 @@
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#define EEPROM_VERSION "V26"
|
|
|
|
|
#define EEPROM_VERSION "V27"
|
|
|
|
|
|
|
|
|
|
// Change EEPROM version if these are changed:
|
|
|
|
|
#define EEPROM_OFFSET 100
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* V24 EEPROM Layout:
|
|
|
|
|
* V27 EEPROM Layout:
|
|
|
|
|
*
|
|
|
|
|
* 100 Version (char x4)
|
|
|
|
|
* 104 EEPROM Checksum (uint16_t)
|
|
|
|
@ -61,65 +61,66 @@
|
|
|
|
|
* 186 M205 Z planner.max_jerk[Z_AXIS] (float)
|
|
|
|
|
* 190 M205 E planner.max_jerk[E_AXIS] (float)
|
|
|
|
|
* 194 M206 XYZ home_offset (float x3)
|
|
|
|
|
* 206 M218 XYZ hotend_offset (float x3 per additional hotend)
|
|
|
|
|
*
|
|
|
|
|
* Mesh bed leveling:
|
|
|
|
|
* 206 M420 S status (uint8)
|
|
|
|
|
* 207 z_offset (float)
|
|
|
|
|
* 211 mesh_num_x (uint8 as set in firmware)
|
|
|
|
|
* 212 mesh_num_y (uint8 as set in firmware)
|
|
|
|
|
* 213 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
|
|
|
|
|
* 218 M420 S status (uint8)
|
|
|
|
|
* 219 z_offset (float)
|
|
|
|
|
* 223 mesh_num_x (uint8 as set in firmware)
|
|
|
|
|
* 224 mesh_num_y (uint8 as set in firmware)
|
|
|
|
|
* 225 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
|
|
|
|
|
*
|
|
|
|
|
* AUTO BED LEVELING
|
|
|
|
|
* 249 M851 zprobe_zoffset (float)
|
|
|
|
|
* 261 M851 zprobe_zoffset (float)
|
|
|
|
|
*
|
|
|
|
|
* DELTA:
|
|
|
|
|
* 253 M666 XYZ endstop_adj (float x3)
|
|
|
|
|
* 265 M665 R delta_radius (float)
|
|
|
|
|
* 269 M665 L delta_diagonal_rod (float)
|
|
|
|
|
* 273 M665 S delta_segments_per_second (float)
|
|
|
|
|
* 277 M665 A delta_diagonal_rod_trim_tower_1 (float)
|
|
|
|
|
* 281 M665 B delta_diagonal_rod_trim_tower_2 (float)
|
|
|
|
|
* 285 M665 C delta_diagonal_rod_trim_tower_3 (float)
|
|
|
|
|
* 265 M666 XYZ endstop_adj (float x3)
|
|
|
|
|
* 277 M665 R delta_radius (float)
|
|
|
|
|
* 281 M665 L delta_diagonal_rod (float)
|
|
|
|
|
* 285 M665 S delta_segments_per_second (float)
|
|
|
|
|
* 289 M665 A delta_diagonal_rod_trim_tower_1 (float)
|
|
|
|
|
* 293 M665 B delta_diagonal_rod_trim_tower_2 (float)
|
|
|
|
|
* 297 M665 C delta_diagonal_rod_trim_tower_3 (float)
|
|
|
|
|
*
|
|
|
|
|
* Z_DUAL_ENDSTOPS:
|
|
|
|
|
* 289 M666 Z z_endstop_adj (float)
|
|
|
|
|
* 301 M666 Z z_endstop_adj (float)
|
|
|
|
|
*
|
|
|
|
|
* ULTIPANEL:
|
|
|
|
|
* 293 M145 S0 H preheatHotendTemp1 (int)
|
|
|
|
|
* 295 M145 S0 B preheatBedTemp1 (int)
|
|
|
|
|
* 297 M145 S0 F preheatFanSpeed1 (int)
|
|
|
|
|
* 299 M145 S1 H preheatHotendTemp2 (int)
|
|
|
|
|
* 301 M145 S1 B preheatBedTemp2 (int)
|
|
|
|
|
* 303 M145 S1 F preheatFanSpeed2 (int)
|
|
|
|
|
* 305 M145 S0 H preheatHotendTemp1 (int)
|
|
|
|
|
* 307 M145 S0 B preheatBedTemp1 (int)
|
|
|
|
|
* 309 M145 S0 F preheatFanSpeed1 (int)
|
|
|
|
|
* 311 M145 S1 H preheatHotendTemp2 (int)
|
|
|
|
|
* 313 M145 S1 B preheatBedTemp2 (int)
|
|
|
|
|
* 315 M145 S1 F preheatFanSpeed2 (int)
|
|
|
|
|
*
|
|
|
|
|
* PIDTEMP:
|
|
|
|
|
* 305 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
|
|
|
|
|
* 321 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
|
|
|
|
|
* 337 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
|
|
|
|
|
* 353 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
|
|
|
|
|
* 369 M301 L lpq_len (int)
|
|
|
|
|
* 317 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
|
|
|
|
|
* 333 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
|
|
|
|
|
* 349 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
|
|
|
|
|
* 365 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
|
|
|
|
|
* 381 M301 L lpq_len (int)
|
|
|
|
|
*
|
|
|
|
|
* PIDTEMPBED:
|
|
|
|
|
* 371 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
|
|
|
|
|
* 383 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
|
|
|
|
|
*
|
|
|
|
|
* DOGLCD:
|
|
|
|
|
* 383 M250 C lcd_contrast (int)
|
|
|
|
|
* 395 M250 C lcd_contrast (int)
|
|
|
|
|
*
|
|
|
|
|
* FWRETRACT:
|
|
|
|
|
* 385 M209 S autoretract_enabled (bool)
|
|
|
|
|
* 386 M207 S retract_length (float)
|
|
|
|
|
* 390 M207 W retract_length_swap (float)
|
|
|
|
|
* 394 M207 F retract_feedrate_mm_s (float)
|
|
|
|
|
* 399 M207 Z retract_zlift (float)
|
|
|
|
|
* 402 M208 S retract_recover_length (float)
|
|
|
|
|
* 406 M208 W retract_recover_length_swap (float)
|
|
|
|
|
* 410 M208 F retract_recover_feedrate_mm_s (float)
|
|
|
|
|
* 397 M209 S autoretract_enabled (bool)
|
|
|
|
|
* 398 M207 S retract_length (float)
|
|
|
|
|
* 402 M207 W retract_length_swap (float)
|
|
|
|
|
* 406 M207 F retract_feedrate_mm_s (float)
|
|
|
|
|
* 410 M207 Z retract_zlift (float)
|
|
|
|
|
* 414 M208 S retract_recover_length (float)
|
|
|
|
|
* 418 M208 W retract_recover_length_swap (float)
|
|
|
|
|
* 422 M208 F retract_recover_feedrate_mm_s (float)
|
|
|
|
|
*
|
|
|
|
|
* Volumetric Extrusion:
|
|
|
|
|
* 414 M200 D volumetric_enabled (bool)
|
|
|
|
|
* 415 M200 T D filament_size (float x4) (T0..3)
|
|
|
|
|
* 426 M200 D volumetric_enabled (bool)
|
|
|
|
|
* 427 M200 T D filament_size (float x4) (T0..3)
|
|
|
|
|
*
|
|
|
|
|
* 431 This Slot is Available!
|
|
|
|
|
* 443 This Slot is Available!
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
#include "Marlin.h"
|
|
|
|
@ -196,371 +197,389 @@ void Config_Postprocess() {
|
|
|
|
|
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
|
|
|
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M500 - Store Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_StoreSettings() {
|
|
|
|
|
float dummy = 0.0f;
|
|
|
|
|
char ver[4] = "000";
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
|
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
EEPROM_WRITE(planner.acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_segment_time);
|
|
|
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
|
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
|
|
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
|
|
|
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
|
|
|
|
|
mesh_num_y = MESH_NUM_Y_POINTS,
|
|
|
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
EEPROM_WRITE(mbl.z_values);
|
|
|
|
|
#else
|
|
|
|
|
// For disabled MBL write a default mesh
|
|
|
|
|
uint8_t mesh_num_x = 3,
|
|
|
|
|
mesh_num_y = 3,
|
|
|
|
|
dummy_uint8 = 0;
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
|
int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
|
|
|
|
|
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
|
|
|
|
|
#endif // !ULTIPANEL
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed1);
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
if (e < HOTENDS) {
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
{
|
|
|
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
|
|
|
EEPROM_WRITE(dummy); // Kp
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // Hotends Loop
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
int lpq_len = 20;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
|
|
|
dummy = DUMMY_PID_VALUE;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
const int lcd_contrast = 32;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
|
|
|
EEPROM_WRITE(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_WRITE(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_zlift);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_WRITE(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
/**
|
|
|
|
|
* M500 - Store Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_StoreSettings() {
|
|
|
|
|
float dummy = 0.0f;
|
|
|
|
|
char ver[4] = "000";
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
|
|
|
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
|
|
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before first "real data"
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
EEPROM_WRITE(planner.acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
|
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(planner.min_segment_time);
|
|
|
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
|
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
|
|
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
// Save filament sizes
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum,
|
|
|
|
|
eeprom_size = eeprom_index;
|
|
|
|
|
|
|
|
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
|
EEPROM_WRITE(version);
|
|
|
|
|
EEPROM_WRITE(final_checksum);
|
|
|
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M501 - Retrieve Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
char stored_ver[4];
|
|
|
|
|
EEPROM_READ(stored_ver);
|
|
|
|
|
|
|
|
|
|
uint16_t stored_checksum;
|
|
|
|
|
EEPROM_READ(stored_checksum);
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Version: [", ver);
|
|
|
|
|
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
|
|
|
|
|
// SERIAL_CHAR(']');
|
|
|
|
|
// SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
|
|
|
Config_ResetDefault();
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float dummy = 0;
|
|
|
|
|
|
|
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
|
|
|
|
|
|
// version number match
|
|
|
|
|
EEPROM_READ(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_READ(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
|
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
|
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
|
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_segment_time);
|
|
|
|
|
EEPROM_READ(planner.max_jerk);
|
|
|
|
|
EEPROM_READ(home_offset);
|
|
|
|
|
|
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
|
|
|
|
EEPROM_READ(dummy_uint8);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
EEPROM_READ(mesh_num_x);
|
|
|
|
|
EEPROM_READ(mesh_num_y);
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
mbl.status = dummy_uint8;
|
|
|
|
|
mbl.z_offset = dummy;
|
|
|
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
|
|
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
|
EEPROM_READ(mbl.z_values);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// EEPROM data is stale
|
|
|
|
|
mbl.reset();
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
}
|
|
|
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
|
|
|
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
|
|
|
|
|
uint8_t mesh_num_x = MESH_NUM_X_POINTS,
|
|
|
|
|
mesh_num_y = MESH_NUM_Y_POINTS,
|
|
|
|
|
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
EEPROM_WRITE(mbl.z_values);
|
|
|
|
|
#else
|
|
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
// For disabled MBL write a default mesh
|
|
|
|
|
uint8_t mesh_num_x = 3,
|
|
|
|
|
mesh_num_y = 3,
|
|
|
|
|
dummy_uint8 = 0;
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy_uint8);
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
EEPROM_WRITE(mesh_num_x);
|
|
|
|
|
EEPROM_WRITE(mesh_num_y);
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
EEPROM_WRITE(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_READ(z_endstop_adj);
|
|
|
|
|
EEPROM_WRITE(z_endstop_adj); // 1 float
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
|
|
|
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
|
|
|
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
|
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
|
|
|
|
|
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(preheatHotendTemp1);
|
|
|
|
|
EEPROM_READ(preheatBedTemp1);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed1);
|
|
|
|
|
EEPROM_READ(preheatHotendTemp2);
|
|
|
|
|
EEPROM_READ(preheatBedTemp2);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
EEPROM_READ(dummy); // Kp
|
|
|
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
|
|
PID_PARAM(Kp, e) = dummy;
|
|
|
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
|
|
|
int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
|
|
|
|
|
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
|
|
|
|
|
#endif // !ULTIPANEL
|
|
|
|
|
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp1);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed1);
|
|
|
|
|
EEPROM_WRITE(preheatHotendTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatBedTemp2);
|
|
|
|
|
EEPROM_WRITE(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
if (e < HOTENDS) {
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
|
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
|
|
else
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
{
|
|
|
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
|
|
|
EEPROM_WRITE(dummy); // Kp
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#else // !PIDTEMP
|
|
|
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
|
|
|
|
|
} // Hotends Loop
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
int lpq_len;
|
|
|
|
|
int lpq_len = 20;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
EEPROM_READ(dummy); // bedKp
|
|
|
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
thermalManager.bedKp = dummy;
|
|
|
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
|
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
|
|
|
}
|
|
|
|
|
EEPROM_WRITE(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
|
|
|
dummy = DUMMY_PID_VALUE;
|
|
|
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
|
|
|
#else
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
|
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
int lcd_contrast;
|
|
|
|
|
const int lcd_contrast = 32;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_READ(autoretract_enabled);
|
|
|
|
|
EEPROM_READ(retract_length);
|
|
|
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
|
|
|
EEPROM_WRITE(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_length_swap);
|
|
|
|
|
EEPROM_WRITE(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(retract_zlift);
|
|
|
|
|
EEPROM_READ(retract_recover_length);
|
|
|
|
|
EEPROM_WRITE(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_zlift);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_recover_length_swap);
|
|
|
|
|
EEPROM_WRITE(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_recover_feedrate_mm_s);
|
|
|
|
|
EEPROM_WRITE(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(volumetric_enabled);
|
|
|
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
// Save filament sizes
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
|
|
|
|
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
|
|
|
|
EEPROM_WRITE(dummy);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (eeprom_checksum == stored_checksum) {
|
|
|
|
|
Config_Postprocess();
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHO(version);
|
|
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
|
|
|
|
|
uint16_t final_checksum = eeprom_checksum,
|
|
|
|
|
eeprom_size = eeprom_index;
|
|
|
|
|
|
|
|
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
|
EEPROM_WRITE(version);
|
|
|
|
|
EEPROM_WRITE(final_checksum);
|
|
|
|
|
|
|
|
|
|
// Report storage size
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M501 - Retrieve Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_RetrieveSettings() {
|
|
|
|
|
|
|
|
|
|
EEPROM_START();
|
|
|
|
|
|
|
|
|
|
char stored_ver[4];
|
|
|
|
|
EEPROM_READ(stored_ver);
|
|
|
|
|
|
|
|
|
|
uint16_t stored_checksum;
|
|
|
|
|
EEPROM_READ(stored_checksum);
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("Version: [", ver);
|
|
|
|
|
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
|
|
|
|
|
// SERIAL_CHAR(']');
|
|
|
|
|
// SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
|
|
|
Config_ResetDefault();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
float dummy = 0;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
|
Config_PrintSettings();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
eeprom_checksum = 0; // clear before reading first "real data"
|
|
|
|
|
|
|
|
|
|
// version number match
|
|
|
|
|
EEPROM_READ(planner.axis_steps_per_mm);
|
|
|
|
|
EEPROM_READ(planner.max_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.max_acceleration_mm_per_s2);
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
|
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
|
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
|
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(planner.min_segment_time);
|
|
|
|
|
EEPROM_READ(planner.max_jerk);
|
|
|
|
|
EEPROM_READ(home_offset);
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
// Skip hotend 0 which must be 0
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
|
|
|
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
|
|
|
|
|
EEPROM_READ(dummy_uint8);
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
EEPROM_READ(mesh_num_x);
|
|
|
|
|
EEPROM_READ(mesh_num_y);
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
mbl.status = dummy_uint8;
|
|
|
|
|
mbl.z_offset = dummy;
|
|
|
|
|
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
|
|
|
|
|
// EEPROM data fits the current mesh
|
|
|
|
|
EEPROM_READ(mbl.z_values);
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// EEPROM data is stale
|
|
|
|
|
mbl.reset();
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
// MBL is disabled - skip the stored data
|
|
|
|
|
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
|
|
|
|
|
#if !HAS_BED_PROBE
|
|
|
|
|
float zprobe_zoffset = 0;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
EEPROM_READ(endstop_adj); // 3 floats
|
|
|
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
|
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
|
|
|
|
|
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
EEPROM_READ(z_endstop_adj);
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
|
|
|
#else
|
|
|
|
|
dummy = 0.0f;
|
|
|
|
|
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
|
|
|
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
|
|
|
|
|
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(preheatHotendTemp1);
|
|
|
|
|
EEPROM_READ(preheatBedTemp1);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed1);
|
|
|
|
|
EEPROM_READ(preheatHotendTemp2);
|
|
|
|
|
EEPROM_READ(preheatBedTemp2);
|
|
|
|
|
EEPROM_READ(preheatFanSpeed2);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
|
EEPROM_READ(dummy); // Kp
|
|
|
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
|
|
|
PID_PARAM(Kp, e) = dummy;
|
|
|
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#else // !PIDTEMP
|
|
|
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
|
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
|
|
|
#endif // !PIDTEMP
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
int lpq_len;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lpq_len);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
EEPROM_READ(dummy); // bedKp
|
|
|
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
|
|
|
thermalManager.bedKp = dummy;
|
|
|
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
|
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
|
|
|
int lcd_contrast;
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
EEPROM_READ(autoretract_enabled);
|
|
|
|
|
EEPROM_READ(retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_feedrate_mm_s);
|
|
|
|
|
EEPROM_READ(retract_zlift);
|
|
|
|
|
EEPROM_READ(retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
EEPROM_READ(retract_recover_length_swap);
|
|
|
|
|
#else
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
#endif
|
|
|
|
|
EEPROM_READ(retract_recover_feedrate_mm_s);
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
EEPROM_READ(volumetric_enabled);
|
|
|
|
|
|
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
|
|
|
EEPROM_READ(dummy);
|
|
|
|
|
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (eeprom_checksum == stored_checksum) {
|
|
|
|
|
Config_Postprocess();
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHO(version);
|
|
|
|
|
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
|
|
|
|
|
SERIAL_ECHOLNPGM(" bytes)");
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
|
|
|
|
|
Config_ResetDefault();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // EEPROM_SETTINGS
|
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
|
|
|
Config_PrintSettings();
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else // !EEPROM_SETTINGS
|
|
|
|
|
|
|
|
|
|
void Config_StoreSettings() {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("EEPROM disabled");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // !EEPROM_SETTINGS
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M502 - Reset Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_ResetDefault() {
|
|
|
|
|
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
|
|
|
|
|
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
|
|
|
|
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
|
|
|
|
const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
|
|
|
|
|
const long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
|
|
|
|
LOOP_XYZE(i) {
|
|
|
|
|
planner.axis_steps_per_mm[i] = tmp1[i];
|
|
|
|
|
planner.max_feedrate_mm_s[i] = tmp2[i];
|
|
|
|
@ -579,6 +598,23 @@ void Config_ResetDefault() {
|
|
|
|
|
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
|
|
|
|
|
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
constexpr float tmp4[XYZ][HOTENDS] = {
|
|
|
|
|
HOTEND_OFFSET_X,
|
|
|
|
|
HOTEND_OFFSET_Y
|
|
|
|
|
#ifdef HOTEND_OFFSET_Z
|
|
|
|
|
, HOTEND_OFFSET_Z
|
|
|
|
|
#else
|
|
|
|
|
, { 0 }
|
|
|
|
|
#endif
|
|
|
|
|
};
|
|
|
|
|
static_assert(
|
|
|
|
|
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
|
|
|
|
|
"Offsets for the first hotend must be 0.0."
|
|
|
|
|
);
|
|
|
|
|
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
mbl.reset();
|
|
|
|
|
#endif
|
|
|
|
@ -675,293 +711,310 @@ void Config_ResetDefault() {
|
|
|
|
|
|
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
|
|
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* M503 - Print Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_PrintSettings(bool forReplay) {
|
|
|
|
|
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
|
|
|
|
|
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
/**
|
|
|
|
|
* M503 - Print Configuration
|
|
|
|
|
*/
|
|
|
|
|
void Config_PrintSettings(bool forReplay) {
|
|
|
|
|
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
|
|
|
|
|
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Home offset (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling:");
|
|
|
|
|
SERIAL_ECHOLNPGM("Steps per unit:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
|
|
|
|
|
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
|
|
|
|
|
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" G29 S3 X", px);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", py);
|
|
|
|
|
SERIAL_ECHOPGM(" Z");
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
|
|
|
|
|
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", delta_radius);
|
|
|
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
|
|
|
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
|
|
|
|
|
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
|
|
|
|
|
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
|
|
|
|
|
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
|
|
|
|
|
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
|
|
|
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
|
|
|
|
|
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
|
|
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
|
|
|
SERIAL_ECHOLNPGM("Home offset (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
if (forReplay) {
|
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 E", e);
|
|
|
|
|
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
|
|
|
|
|
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
|
// !forReplay || HOTENDS == 1
|
|
|
|
|
{
|
|
|
|
|
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Hotend offsets (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
|
|
|
SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
}
|
|
|
|
|
for (uint8_t e = 1; e < HOTENDS; e++) {
|
|
|
|
|
SERIAL_ECHOPAIR(" M218 T", (int)e);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS]);
|
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS]);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif // PIDTEMP
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Mesh bed leveling:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
|
|
|
|
|
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
|
|
|
|
|
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", (int)py);
|
|
|
|
|
SERIAL_ECHOPGM(" Z");
|
|
|
|
|
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
|
|
|
|
|
SERIAL_ECHOPAIR(" R", delta_radius);
|
|
|
|
|
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
|
|
|
|
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
|
|
|
|
|
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // DELTA
|
|
|
|
|
|
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Material heatup parameters:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
|
|
|
|
|
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M207 S", retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_length_swap);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", retract_zlift);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("PID settings:");
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
|
#if HOTENDS > 1
|
|
|
|
|
if (forReplay) {
|
|
|
|
|
HOTEND_LOOP() {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 E", e);
|
|
|
|
|
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
|
|
|
|
|
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
|
// !forReplay || HOTENDS == 1
|
|
|
|
|
{
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
|
|
|
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
|
|
|
|
|
SERIAL_ECHOPAIR(" L", lpq_len);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif // PIDTEMP
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
|
|
|
|
|
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
|
|
|
|
|
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
|
|
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("LCD Contrast:");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Volumetric extrusion M200
|
|
|
|
|
*/
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPGM("Filament settings:");
|
|
|
|
|
if (volumetric_enabled)
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M207 S", retract_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_length_swap);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
|
|
|
|
|
SERIAL_ECHOPAIR(" Z", retract_zlift);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
else
|
|
|
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
|
|
|
}
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
|
|
|
|
|
#endif
|
|
|
|
|
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
#endif // FWRETRACT
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Volumetric extrusion M200
|
|
|
|
|
*/
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPGM("Filament settings:");
|
|
|
|
|
if (volumetric_enabled)
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
else
|
|
|
|
|
SERIAL_ECHOLNPGM(" Disabled");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (!volumetric_enabled) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM(" M200 D0");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Auto Bed Leveling
|
|
|
|
|
*/
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
if (!volumetric_enabled) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
|
|
|
SERIAL_ECHOLNPGM(" M200 D0");
|
|
|
|
|
}
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Auto Bed Leveling
|
|
|
|
|
*/
|
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
|
if (!forReplay) {
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
|
|
|
|
}
|
|
|
|
|
CONFIG_ECHO_START;
|
|
|
|
|
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // !DISABLE_M503
|
|
|
|
|