Merge branch 'Development' into marlin_configurator

Latest upstream changes
master
Scott Lahteine 10 years ago
commit 4b50205f11

@ -362,6 +362,15 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS) #define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS) #define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
//===========================================================================
//============================= Filament Runout Sensor ======================
//===========================================================================
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
// It is assumed that when logic high = filament available
// when logic low = filament ran out
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
//=========================================================================== //===========================================================================
//============================= Bed Auto Leveling =========================== //============================= Bed Auto Leveling ===========================

@ -32,6 +32,9 @@
#include "WProgram.h" #include "WProgram.h"
#endif #endif
#define BIT(b) (1<<(b))
#define TEST(n,b) ((n)&BIT(b)!=0)
// Arduino < 1.0.0 does not define this, so we need to do it ourselves // Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin #ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p) + 0xA0) #define analogInputToDigitalPin(p) ((p) + 0xA0)
@ -199,6 +202,10 @@ void prepare_move();
void kill(); void kill();
void Stop(); void Stop();
#ifdef FILAMENT_RUNOUT_SENSOR
void filrunout();
#endif
bool IsStopped(); bool IsStopped();
bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full

@ -47,7 +47,7 @@
#endif #endif
#endif #endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif

@ -47,7 +47,7 @@
#endif #endif
#endif #endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif

@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) {
#endif #endif
if (useU2X) { if (useU2X) {
M_UCSRxA = 1 << M_U2Xx; M_UCSRxA = BIT(M_U2Xx);
baud_setting = (F_CPU / 4 / baud - 1) / 2; baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else { } else {
M_UCSRxA = 0; M_UCSRxA = 0;

@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream
} }
FORCE_INLINE void write(uint8_t c) { FORCE_INLINE void write(uint8_t c) {
while (!((M_UCSRxA) & (1 << M_UDREx))) while (!TEST(M_UCSRxA, M_UDREx))
; ;
M_UDRx = c; M_UDRx = c;
} }
FORCE_INLINE void checkRx(void) { FORCE_INLINE void checkRx(void) {
if ((M_UCSRxA & (1<<M_RXCx)) != 0) { if (TEST(M_UCSRxA, M_RXCx)) {
unsigned char c = M_UDRx; unsigned char c = M_UDRx;
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE; int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;

@ -62,7 +62,7 @@
#include "Servo.h" #include "Servo.h"
#endif #endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
@ -370,6 +370,10 @@ bool cancel_heatup = false;
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif #endif
#ifdef FILAMENT_RUNOUT_SENSOR
static bool filrunoutEnqued = false;
#endif
const char errormagic[] PROGMEM = "Error:"; const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:"; const char echomagic[] PROGMEM = "echo:";
@ -529,6 +533,16 @@ void setup_killpin()
#endif #endif
} }
void setup_filrunoutpin()
{
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
pinMode(FILRUNOUT_PIN,INPUT);
#if defined(ENDSTOPPULLUP_FIL_RUNOUT)
WRITE(FILLRUNOUT_PIN,HIGH);
#endif
#endif
}
// Set home pin // Set home pin
void setup_homepin(void) void setup_homepin(void)
{ {
@ -605,6 +619,7 @@ void servo_init()
void setup() void setup()
{ {
setup_killpin(); setup_killpin();
setup_filrunoutpin();
setup_powerhold(); setup_powerhold();
MYSERIAL.begin(BAUDRATE); MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start"); SERIAL_PROTOCOLLNPGM("start");
@ -2015,14 +2030,15 @@ inline void gcode_G28() {
if (verbose_level) { if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001); SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001); SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001); SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_EOL;
if (verbose_level > 2) { if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: "); SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOL_F(mean, 8);
SERIAL_EOL; SERIAL_EOL;
} }
} }
@ -2033,15 +2049,20 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n"); SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
#if TOPO_ORIGIN == OriginFrontLeft #if TOPO_ORIGIN == OriginFrontLeft
SERIAL_PROTOCOLPGM("+-----------+\n");
SERIAL_PROTOCOLPGM("|...Back....|\n");
SERIAL_PROTOCOLPGM("|Left..Right|\n");
SERIAL_PROTOCOLPGM("|...Front...|\n");
SERIAL_PROTOCOLPGM("+-----------+\n");
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
#else #else
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++) for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
#endif #endif
{ {
#if TOPO_ORIGIN == OriginBackRight #if TOPO_ORIGIN == OriginBackRight
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#else
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++) for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
#else
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#endif #endif
{ {
int ind = int ind =
@ -4130,6 +4151,11 @@ inline void gcode_M503() {
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
#endif #endif
#ifdef FILAMENT_RUNOUT_SENSOR
filrunoutEnqued = false;
#endif
} }
#endif // FILAMENTCHANGEENABLE #endif // FILAMENTCHANGEENABLE
@ -4184,7 +4210,7 @@ inline void gcode_M503() {
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/ */
inline void gcode_M907() { inline void gcode_M907() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
for (int i=0;i<NUM_AXIS;i++) for (int i=0;i<NUM_AXIS;i++)
if (code_seen(axis_codes[i])) digipot_current(i, code_value()); if (code_seen(axis_codes[i])) digipot_current(i, code_value());
if (code_seen('B')) digipot_current(4, code_value()); if (code_seen('B')) digipot_current(4, code_value());
@ -4207,7 +4233,7 @@ inline void gcode_M907() {
#endif #endif
} }
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
/** /**
* M908: Control digital trimpot directly (M908 P<pin> S<current>) * M908: Control digital trimpot directly (M908 P<pin> S<current>)
@ -4219,7 +4245,7 @@ inline void gcode_M907() {
); );
} }
#endif // DIGIPOTSS_PIN #endif // HAS_DIGIPOTSS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() { inline void gcode_M350() {
@ -4806,11 +4832,11 @@ void process_commands() {
gcode_M907(); gcode_M907();
break; break;
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
case 908: // M908 Control digital trimpot directly. case 908: // M908 Control digital trimpot directly.
gcode_M908(); gcode_M908();
break; break;
#endif // DIGIPOTSS_PIN #endif // HAS_DIGIPOTSS
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350(); gcode_M350();
@ -5269,6 +5295,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
const int KILL_DELAY = 10000; const int KILL_DELAY = 10000;
#endif #endif
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
if(card.sdprinting) {
if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
filrunout(); }
#endif
#if defined(HOME_PIN) && HOME_PIN > -1 #if defined(HOME_PIN) && HOME_PIN > -1
static int homeDebounceCount = 0; // poor man's debouncing count static int homeDebounceCount = 0; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 10000; const int HOME_DEBOUNCE_DELAY = 10000;
@ -5417,6 +5449,16 @@ void kill()
while(1) { /* Intentionally left empty */ } // Wait for reset while(1) { /* Intentionally left empty */ } // Wait for reset
} }
#ifdef FILAMENT_RUNOUT_SENSOR
void filrunout()
{
if filrunoutEnqued == false {
filrunoutEnqued = true;
enquecommand("M600");
}
}
#endif
void Stop() void Stop()
{ {
disable_heater(); disable_heater();

@ -35,14 +35,14 @@
*/ */
static void spiInit(uint8_t spiRate) { static void spiInit(uint8_t spiRate) {
// See avr processor documentation // See avr processor documentation
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1); SPCR = BIT(SPE) | BIT(MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X; SPSR = spiRate & 1 || spiRate == 6 ? 0 : BIT(SPI2X);
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI receive a byte */ /** SPI receive a byte */
static uint8_t spiRec() { static uint8_t spiRec() {
SPDR = 0XFF; SPDR = 0XFF;
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
return SPDR; return SPDR;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte-- == 0) return; if (nbyte-- == 0) return;
SPDR = 0XFF; SPDR = 0XFF;
for (uint16_t i = 0; i < nbyte; i++) { for (uint16_t i = 0; i < nbyte; i++) {
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[i] = SPDR; buf[i] = SPDR;
SPDR = 0XFF; SPDR = 0XFF;
} }
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[nbyte] = SPDR; buf[nbyte] = SPDR;
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI send a byte */ /** SPI send a byte */
static void spiSend(uint8_t b) { static void spiSend(uint8_t b) {
SPDR = b; SPDR = b;
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** SPI send block - only one call so force inline */ /** SPI send block - only one call so force inline */
@ -71,12 +71,12 @@ static inline __attribute__((always_inline))
void spiSendBlock(uint8_t token, const uint8_t* buf) { void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPDR = token; SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) { for (uint16_t i = 0; i < 512; i += 2) {
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i]; SPDR = buf[i];
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i + 1]; SPDR = buf[i + 1];
} }
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ } while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
} }
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
#else // SOFTWARE_SPI #else // SOFTWARE_SPI

@ -334,9 +334,9 @@ static inline __attribute__((always_inline))
void setPinMode(uint8_t pin, uint8_t mode) { void setPinMode(uint8_t pin, uint8_t mode) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) { if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) { if (mode) {
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit; *digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
} else { } else {
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit); *digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
} }
} else { } else {
badPinNumber(); badPinNumber();
@ -354,9 +354,9 @@ static inline __attribute__((always_inline))
void fastDigitalWrite(uint8_t pin, uint8_t value) { void fastDigitalWrite(uint8_t pin, uint8_t value) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) { if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) { if (value) {
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit; *digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
} else { } else {
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit); *digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
} }
} else { } else {
badPinNumber(); badPinNumber();

@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) {
return 2*(fatTime & 0X1F); return 2*(fatTime & 0X1F);
} }
/** Default date for file timestamps is 1 Jan 2000 */ /** Default date for file timestamps is 1 Jan 2000 */
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1; uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | BIT(5) | 1;
/** Default time for file timestamp is 1 am */ /** Default time for file timestamp is 1 am */
uint16_t const FAT_DEFAULT_TIME = (1 << 11); uint16_t const FAT_DEFAULT_TIME = BIT(11);
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** /**
* \class SdBaseFile * \class SdBaseFile

@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) {
blocksPerCluster_ = fbs->sectorsPerCluster; blocksPerCluster_ = fbs->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_ // determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0; clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) { while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
// error if not power of 2 // error if not power of 2
if (clusterSizeShift_++ > 7) goto fail; if (clusterSizeShift_++ > 7) goto fail;
} }

@ -24,9 +24,9 @@
#define BLEN_A 0 #define BLEN_A 0
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_C 2 #define BLEN_C 2
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#endif #endif

@ -13,7 +13,6 @@
*/ */
#ifndef MASK #ifndef MASK
/// MASKING- returns \f$2^PIN\f$
#define MASK(PIN) (1 << PIN) #define MASK(PIN) (1 << PIN)
#endif #endif

@ -184,4 +184,6 @@
analogInputToDigitalPin(TEMP_BED_PIN) \ analogInputToDigitalPin(TEMP_BED_PIN) \
} }
#define HAS_DIGIPOTSS (DIGIPOTSS_PIN >= 0)
#endif //__PINS_H #endif //__PINS_H

@ -61,6 +61,11 @@
#define FILWIDTH_PIN 5 #define FILWIDTH_PIN 5
#endif #endif
#if defined(FILAMENT_RUNOUT_SENSOR)
// define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector
#define FILRUNOUT_PIN 4
#endif
#if MB(RAMPS_13_EFB) || MB(RAMPS_13_EFF) #if MB(RAMPS_13_EFB) || MB(RAMPS_13_EFF)
#define FAN_PIN 9 // (Sprinter config) #define FAN_PIN 9 // (Sprinter config)
#if MB(RAMPS_13_EFF) #if MB(RAMPS_13_EFF)

@ -623,37 +623,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
#ifndef COREXY #ifndef COREXY
if (target[X_AXIS] < position[X_AXIS]) if (target[X_AXIS] < position[X_AXIS])
{ {
block->direction_bits |= (1<<X_AXIS); block->direction_bits |= BIT(X_AXIS);
} }
if (target[Y_AXIS] < position[Y_AXIS]) if (target[Y_AXIS] < position[Y_AXIS])
{ {
block->direction_bits |= (1<<Y_AXIS); block->direction_bits |= BIT(Y_AXIS);
} }
#else #else
if (target[X_AXIS] < position[X_AXIS]) if (target[X_AXIS] < position[X_AXIS])
{ {
block->direction_bits |= (1<<X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
} }
if (target[Y_AXIS] < position[Y_AXIS]) if (target[Y_AXIS] < position[Y_AXIS])
{ {
block->direction_bits |= (1<<Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
} }
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0) if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{ {
block->direction_bits |= (1<<X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS) block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
} }
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0) if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{ {
block->direction_bits |= (1<<Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS) block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
} }
#endif #endif
if (target[Z_AXIS] < position[Z_AXIS]) if (target[Z_AXIS] < position[Z_AXIS])
{ {
block->direction_bits |= (1<<Z_AXIS); block->direction_bits |= BIT(Z_AXIS);
} }
if (target[E_AXIS] < position[E_AXIS]) if (target[E_AXIS] < position[E_AXIS])
{ {
block->direction_bits |= (1<<E_AXIS); block->direction_bits |= BIT(E_AXIS);
} }
block->active_extruder = extruder; block->active_extruder = extruder;
@ -864,7 +864,7 @@ Having the real displacement of the head, we can calculate the total movement le
old_direction_bits = block->direction_bits; old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor); segment_time = lround((float)segment_time / speed_factor);
if((direction_change & (1<<X_AXIS)) == 0) if((direction_change & BIT(X_AXIS)) == 0)
{ {
x_segment_time[0] += segment_time; x_segment_time[0] += segment_time;
} }
@ -874,7 +874,7 @@ Having the real displacement of the head, we can calculate the total movement le
x_segment_time[1] = x_segment_time[0]; x_segment_time[1] = x_segment_time[0];
x_segment_time[0] = segment_time; x_segment_time[0] = segment_time;
} }
if((direction_change & (1<<Y_AXIS)) == 0) if((direction_change & BIT(Y_AXIS)) == 0)
{ {
y_segment_time[0] += segment_time; y_segment_time[0] += segment_time;
} }

@ -29,7 +29,7 @@
#include "language.h" #include "language.h"
#include "cardreader.h" #include "cardreader.h"
#include "speed_lookuptable.h" #include "speed_lookuptable.h"
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
#include <SPI.h> #include <SPI.h>
#endif #endif
@ -40,22 +40,23 @@ block_t *current_block; // A pointer to the block currently being traced
//=========================================================================== //===========================================================================
//=============================private variables ============================ //============================= private variables ===========================
//=========================================================================== //===========================================================================
//static makes it impossible to be called from outside of this file by extern.! //static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y, // Counter variables for the bresenham line tracer
counter_z, static long counter_x, counter_y, counter_z, counter_e;
counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
static long advance_rate, advance, final_advance = 0; static long advance_rate, advance, final_advance = 0;
static long old_advance = 0; static long old_advance = 0;
static long e_steps[4]; static long e_steps[4];
#endif #endif
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
static unsigned short acc_step_rate; // needed for deccelaration start point static unsigned short acc_step_rate; // needed for deccelaration start point
@ -63,36 +64,82 @@ static char step_loops;
static unsigned short OCR1A_nominal; static unsigned short OCR1A_nominal;
static unsigned short step_loops_nominal; static unsigned short step_loops_nominal;
volatile long endstops_trigsteps[3]={0,0,0}; volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal, endstops_stepsDone; volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile bool endstop_x_hit = false; static volatile bool endstop_x_hit = false;
static volatile bool endstop_y_hit = false; static volatile bool endstop_y_hit = false;
static volatile bool endstop_z_hit = false; static volatile bool endstop_z_hit = false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false; bool abort_on_endstop_hit = false;
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT; int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif #endif
static bool old_x_min_endstop=false; static bool old_x_min_endstop = false,
static bool old_x_max_endstop=false; old_x_max_endstop = false,
static bool old_y_min_endstop=false; old_y_min_endstop = false,
static bool old_y_max_endstop=false; old_y_max_endstop = false,
static bool old_z_min_endstop=false; old_z_min_endstop = false,
static bool old_z_max_endstop=false; old_z_max_endstop = false;
static bool check_endstops = true; static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0}; volatile long count_position[NUM_AXIS] = { 0 };
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1}; volatile signed char count_direction[NUM_AXIS] = { 1 };
//=========================================================================== //===========================================================================
//=============================functions ============================ //================================ functions ================================
//=========================================================================== //===========================================================================
#define CHECK_ENDSTOPS if(check_endstops) #ifdef DUAL_X_CARRIAGE
#define X_APPLY_DIR(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_DIR_WRITE(v); \
X2_DIR_WRITE(v); \
} \
else{ \
if (current_block->active_extruder) \
X2_DIR_WRITE(v); \
else \
X_DIR_WRITE(v); \
}
#define X_APPLY_STEP(v,ALWAYS) \
if (extruder_duplication_enabled || ALWAYS) { \
X_STEP_WRITE(v); \
X2_STEP_WRITE(v); \
} \
else { \
if (current_block->active_extruder != 0) \
X2_STEP_WRITE(v); \
else \
X_STEP_WRITE(v); \
}
#else
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
#endif
#ifdef Y_DUAL_STEPPER_DRIVERS
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
#else
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
#else
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
// intRes = intIn1 * intIn2 >> 16 // intRes = intIn1 * intIn2 >> 16
// uses: // uses:
@ -166,12 +213,14 @@ asm volatile ( \
// Some useful constants // Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
void endstops_hit_on_purpose() {
endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
}
void checkHitEndstops() void checkHitEndstops() {
{
if (endstop_x_hit || endstop_y_hit || endstop_z_hit) { if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
@ -188,12 +237,11 @@ void checkHitEndstops()
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z"); LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
} }
SERIAL_EOL; SERIAL_EOL;
endstop_x_hit=false;
endstop_y_hit=false; endstops_hit_on_purpose();
endstop_z_hit=false;
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT) #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
if (abort_on_endstop_hit) if (abort_on_endstop_hit) {
{
card.sdprinting = false; card.sdprinting = false;
card.closefile(); card.closefile();
quickStop(); quickStop();
@ -207,17 +255,7 @@ void checkHitEndstops()
} }
} }
void endstops_hit_on_purpose() void enable_endstops(bool check) { check_endstops = check; }
{
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
}
void enable_endstops(bool check)
{
check_endstops = check;
}
// __________________________ // __________________________
// /| |\ _________________ ^ // /| |\ _________________ ^
@ -303,24 +341,20 @@ FORCE_INLINE void trapezoid_generator_reset() {
// SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0); // SERIAL_ECHOLN(current_block->final_advance/256.0);
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect) {
{
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) { if (!current_block) {
// Anything in the buffer? // Anything in the buffer?
current_block = plan_get_current_block(); current_block = plan_get_current_block();
if (current_block != NULL) { if (current_block) {
current_block->busy = true; current_block->busy = true;
trapezoid_generator_reset(); trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1); counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x; counter_y = counter_z = counter_e = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0; step_events_completed = 0;
#ifdef Z_LATE_ENABLE #ifdef Z_LATE_ENABLE
@ -344,68 +378,42 @@ ISR(TIMER1_COMPA_vect)
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits; out_bits = current_block->direction_bits;
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){ if (TEST(out_bits, X_AXIS)) {
#ifdef DUAL_X_CARRIAGE X_APPLY_DIR(INVERT_X_DIR,0);
if (extruder_duplication_enabled){
X_DIR_WRITE(INVERT_X_DIR);
X2_DIR_WRITE(INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(INVERT_X_DIR);
else
X_DIR_WRITE(INVERT_X_DIR);
}
#else
X_DIR_WRITE(INVERT_X_DIR);
#endif
count_direction[X_AXIS] = -1; count_direction[X_AXIS] = -1;
} }
else { else {
#ifdef DUAL_X_CARRIAGE X_APPLY_DIR(!INVERT_X_DIR,0);
if (extruder_duplication_enabled){
X_DIR_WRITE(!INVERT_X_DIR);
X2_DIR_WRITE( !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
X2_DIR_WRITE(!INVERT_X_DIR);
else
X_DIR_WRITE(!INVERT_X_DIR);
}
#else
X_DIR_WRITE(!INVERT_X_DIR);
#endif
count_direction[X_AXIS] = 1; count_direction[X_AXIS] = 1;
} }
if((out_bits & (1<<Y_AXIS))!=0){
Y_DIR_WRITE(INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
if (TEST(out_bits, Y_AXIS)) {
Y_APPLY_DIR(INVERT_Y_DIR,0);
count_direction[Y_AXIS] = -1; count_direction[Y_AXIS] = -1;
} }
else { else {
Y_DIR_WRITE(!INVERT_Y_DIR); Y_APPLY_DIR(!INVERT_Y_DIR,0);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS] = 1; count_direction[Y_AXIS] = 1;
} }
if(check_endstops) // check X and Y Endstops #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
{ bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
endstop_## axis ##_hit = true; \
step_events_completed = current_block->step_event_count; \
} \
old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
// Check X and Y endstops
if (check_endstops) {
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot) if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis // Head direction in -X axis for CoreXY bots.
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots. // If DeltaX == -DeltaY, the movement is only in Y axis
if (TEST(out_bits, X_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS))))
#endif #endif
{ // -direction { // -direction
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
@ -413,117 +421,71 @@ ISR(TIMER1_COMPA_vect)
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif #endif
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); UPDATE_ENDSTOP(x, X, min, MIN);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif #endif
} }
} }
else else { // +direction
{ // +direction
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif #endif
{ {
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); UPDATE_ENDSTOP(x, X, max, MAX);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif #endif
} }
} }
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction if (TEST(out_bits, Y_AXIS)) // -direction
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis // Head direction in -Y axis for CoreXY bots.
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots. // If DeltaX == DeltaY, the movement is only in X axis
if (TEST(out_bits, Y_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS))))
#endif #endif
{ // -direction { // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); UPDATE_ENDSTOP(y, Y, min, MIN);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif #endif
} }
else else { // +direction
{ // +direction #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 UPDATE_ENDSTOP(y, Y, max, MAX);
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif #endif
} }
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if (TEST(out_bits, Z_AXIS)) { // -direction
Z_DIR_WRITE(INVERT_Z_DIR); Z_DIR_WRITE(INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(INVERT_Z_DIR); Z2_DIR_WRITE(INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS] = -1; count_direction[Z_AXIS] = -1;
CHECK_ENDSTOPS if (check_endstops) {
{ #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 UPDATE_ENDSTOP(z, Z, min, MIN);
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_min_endstop = z_min_endstop;
#endif #endif
} }
} }
else { // +direction else { // +direction
Z_DIR_WRITE(!INVERT_Z_DIR); Z_DIR_WRITE(!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(!INVERT_Z_DIR); Z2_DIR_WRITE(!INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS] = 1; count_direction[Z_AXIS] = 1;
CHECK_ENDSTOPS if (check_endstops) {
{ #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 UPDATE_ENDSTOP(z, Z, max, MAX);
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
step_events_completed = current_block->step_event_count;
}
old_z_max_endstop = z_max_endstop;
#endif #endif
} }
} }
#ifndef ADVANCE #ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) { // -direction if (TEST(out_bits, E_AXIS)) { // -direction
REV_E_DIR(); REV_E_DIR();
count_direction[E_AXIS]=-1; count_direction[E_AXIS]=-1;
} }
@ -533,9 +495,8 @@ ISR(TIMER1_COMPA_vect)
} }
#endif //!ADVANCE #endif //!ADVANCE
// Take multiple steps per interrupt (For high speed moves)
for (int8_t i=0; i < step_loops; i++) {
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
#ifndef AT90USB #ifndef AT90USB
MSerial.checkRx(); // Check for serial chars. MSerial.checkRx(); // Check for serial chars.
#endif #endif
@ -544,139 +505,62 @@ ISR(TIMER1_COMPA_vect)
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
e_steps[current_block->active_extruder]--;
}
else {
e_steps[current_block->active_extruder]++;
}
} }
#endif //ADVANCE #endif //ADVANCE
counter_x += current_block->steps_x;
#ifdef CONFIG_STEPPERS_TOSHIBA #ifdef CONFIG_STEPPERS_TOSHIBA
/* The Toshiba stepper controller require much longer pulses. /**
* The Toshiba stepper controller require much longer pulses.
* So we 'stage' decompose the pulses between high and low * So we 'stage' decompose the pulses between high and low
* instead of doing each in turn. The extra tests add enough * instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs * lag to allow it work with without needing NOPs
*/ */
counter_x += current_block->steps_x;
if (counter_x > 0) X_STEP_WRITE(HIGH); if (counter_x > 0) X_STEP_WRITE(HIGH);
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if (counter_y > 0) Y_STEP_WRITE(HIGH); if (counter_y > 0) Y_STEP_WRITE(HIGH);
counter_z += current_block->steps_z; counter_z += current_block->steps_z;
if (counter_z > 0) Z_STEP_WRITE(HIGH); if (counter_z > 0) Z_STEP_WRITE(HIGH);
#ifndef ADVANCE #ifndef ADVANCE
counter_e += current_block->steps_e; counter_e += current_block->steps_e;
if (counter_e > 0) WRITE_E_STEP(HIGH); if (counter_e > 0) E_STEP_WRITE(HIGH);
#endif //!ADVANCE #endif
if (counter_x > 0) {
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
X_STEP_WRITE(LOW);
}
if (counter_y > 0) {
counter_y -= current_block->step_event_count;
count_position[Y_AXIS] += count_direction[Y_AXIS];
Y_STEP_WRITE( LOW);
}
if (counter_z > 0) { #define STEP_IF_COUNTER(axis, AXIS) \
counter_z -= current_block->step_event_count; if (counter_## axis > 0) {
count_position[Z_AXIS] += count_direction[Z_AXIS]; counter_## axis -= current_block->step_event_count; \
Z_STEP_WRITE(LOW); count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
AXIS ##_STEP_WRITE(LOW);
} }
STEP_IF_COUNTER(x, X);
STEP_IF_COUNTER(y, Y);
STEP_IF_COUNTER(z, Z);
#ifndef ADVANCE #ifndef ADVANCE
if (counter_e > 0) { STEP_IF_COUNTER(e, E);
counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
WRITE_E_STEP(LOW);
}
#endif //!ADVANCE
#else
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(!INVERT_X_STEP_PIN);
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
X_STEP_WRITE(INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
X2_STEP_WRITE(INVERT_X_STEP_PIN);
else
X_STEP_WRITE(INVERT_X_STEP_PIN);
}
#else
X_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif #endif
counter_y -= current_block->step_event_count; #else // !CONFIG_STEPPERS_TOSHIBA
count_position[Y_AXIS] += count_direction[Y_AXIS];
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS #define APPLY_MOVEMENT(axis, AXIS) \
Y2_STEP_WRITE( INVERT_Y_STEP_PIN); counter_## axis += current_block->steps_## axis; \
#endif if (counter_## axis > 0) { \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
counter_## axis -= current_block->step_event_count; \
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
} }
counter_z += current_block->steps_z; APPLY_MOVEMENT(x, X);
if (counter_z > 0) { APPLY_MOVEMENT(y, Y);
Z_STEP_WRITE( !INVERT_Z_STEP_PIN); APPLY_MOVEMENT(z, Z);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifndef ADVANCE
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN); APPLY_MOVEMENT(e, E);
#endif
counter_z -= current_block->step_event_count;
count_position[Z_AXIS] += count_direction[Z_AXIS];
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif #endif
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE_E_STEP(!INVERT_E_STEP_PIN);
counter_e -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
WRITE_E_STEP(INVERT_E_STEP_PIN);
}
#endif //!ADVANCE
#endif // CONFIG_STEPPERS_TOSHIBA #endif // CONFIG_STEPPERS_TOSHIBA
step_events_completed += 1; step_events_completed++;
if (step_events_completed >= current_block->step_event_count) break; if (step_events_completed >= current_block->step_event_count) break;
} }
// Calculare new timer value // Calculare new timer value
@ -821,8 +705,7 @@ ISR(TIMER1_COMPA_vect)
} }
#endif // ADVANCE #endif // ADVANCE
void st_init() void st_init() {
{
digipot_init(); //Initialize Digipot Motor Current digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins microstep_init(); //Initialize Microstepping Pins
@ -835,186 +718,173 @@ void st_init()
L6470_init(); L6470_init();
#endif #endif
// Initialize Dir Pins // Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1 #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
X_DIR_INIT; X_DIR_INIT;
#endif #endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
X2_DIR_INIT; X2_DIR_INIT;
#endif #endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
Y_DIR_INIT; Y_DIR_INIT;
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
Y2_DIR_INIT; Y2_DIR_INIT;
#endif #endif
#endif #endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
Z_DIR_INIT; Z_DIR_INIT;
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
Z2_DIR_INIT; Z2_DIR_INIT;
#endif #endif
#endif #endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
E0_DIR_INIT; E0_DIR_INIT;
#endif #endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
E1_DIR_INIT; E1_DIR_INIT;
#endif #endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1) #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
E2_DIR_INIT; E2_DIR_INIT;
#endif #endif
#if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1) #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
E3_DIR_INIT; E3_DIR_INIT;
#endif #endif
//Initialize Enable Pins - steppers default to disabled. //Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
X_ENABLE_INIT; X_ENABLE_INIT;
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
X2_ENABLE_INIT; X2_ENABLE_INIT;
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
Y_ENABLE_INIT; Y_ENABLE_INIT;
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
Y2_ENABLE_INIT; Y2_ENABLE_INIT;
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
Z_ENABLE_INIT; Z_ENABLE_INIT;
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
Z2_ENABLE_INIT; Z2_ENABLE_INIT;
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif #endif
#endif #endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1) #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
E0_ENABLE_INIT; E0_ENABLE_INIT;
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1) #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
E1_ENABLE_INIT; E1_ENABLE_INIT;
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1) #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
E2_ENABLE_INIT; E2_ENABLE_INIT;
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif #endif
#if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1) #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
E3_ENABLE_INIT; E3_ENABLE_INIT;
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif #endif
//endstops and pullups //endstops and pullups
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
SET_INPUT(X_MIN_PIN); SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN #ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH); WRITE(X_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
SET_INPUT(Y_MIN_PIN); SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN #ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH); WRITE(Y_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
SET_INPUT(Z_MIN_PIN); SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN #ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH); WRITE(Z_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
SET_INPUT(X_MAX_PIN); SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX #ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH); WRITE(X_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
SET_INPUT(Y_MAX_PIN); SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX #ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH); WRITE(Y_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
SET_INPUT(Z_MAX_PIN); SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX #ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH); WRITE(Z_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#define AXIS_INIT(axis, AXIS, PIN) \
AXIS ##_STEP_INIT; \
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
disable_## axis()
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
// Initialize Step Pins // Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1) #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
X_STEP_INIT; AXIS_INIT(x, X, X);
X_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif #endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
X2_STEP_INIT; AXIS_INIT(x, X2, X);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif #endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
Y_STEP_INIT; #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
Y2_STEP_INIT; Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN); Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif #endif
disable_y(); AXIS_INIT(y, Y, Y);
#endif #endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
Z_STEP_INIT; #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
Z2_STEP_INIT; Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN); Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif #endif
disable_z(); AXIS_INIT(z, Z, Z);
#endif #endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
E0_STEP_INIT; E_AXIS_INIT(0);
E0_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e0();
#endif #endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
E1_STEP_INIT; E_AXIS_INIT(1);
E1_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e1();
#endif #endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
E2_STEP_INIT; E_AXIS_INIT(2);
E2_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e2();
#endif #endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1) #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
E3_STEP_INIT; E_AXIS_INIT(3);
E3_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e3();
#endif #endif
// waveform generation = 0100 = CTC // waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13); TCCR1B &= ~BIT(WGM13);
TCCR1B |= (1<<WGM12); TCCR1B |= BIT(WGM12);
TCCR1A &= ~(1<<WGM11); TCCR1A &= ~BIT(WGM11);
TCCR1A &= ~(1<<WGM10); TCCR1A &= ~BIT(WGM10);
// output mode = 00 (disconnected) // output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0); TCCR1A &= ~(3<<COM1A0);
@ -1033,14 +903,14 @@ void st_init()
#ifdef ADVANCE #ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01) #if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~(1<<WGM01); TCCR0A &= ~BIT(WGM01);
TCCR0A &= ~(1<<WGM00); TCCR0A &= ~BIT(WGM00);
#endif #endif
e_steps[0] = 0; e_steps[0] = 0;
e_steps[1] = 0; e_steps[1] = 0;
e_steps[2] = 0; e_steps[2] = 0;
e_steps[3] = 0; e_steps[3] = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= BIT(OCIE0A);
#endif //ADVANCE #endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled enable_endstops(true); // Start with endstops active. After homing they can be disabled
@ -1049,8 +919,7 @@ void st_init()
// Block until all buffered steps are executed // Block until all buffered steps are executed
void st_synchronize() void st_synchronize() {
{
while (blocks_queued()) { while (blocks_queued()) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
@ -1058,8 +927,7 @@ void st_synchronize()
} }
} }
void st_set_position(const long &x, const long &y, const long &z, const long &e) void st_set_position(const long &x, const long &y, const long &z, const long &e) {
{
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_position[X_AXIS] = x; count_position[X_AXIS] = x;
count_position[Y_AXIS] = y; count_position[Y_AXIS] = y;
@ -1068,15 +936,13 @@ void st_set_position(const long &x, const long &y, const long &z, const long &e)
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
void st_set_e_position(const long &e) void st_set_e_position(const long &e) {
{
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_position[E_AXIS] = e; count_position[E_AXIS] = e;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
long st_get_position(uint8_t axis) long st_get_position(uint8_t axis) {
{
long count_pos; long count_pos;
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
count_pos = count_position[axis]; count_pos = count_position[axis];
@ -1085,15 +951,15 @@ long st_get_position(uint8_t axis)
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
float st_get_position_mm(uint8_t axis)
{ float st_get_position_mm(uint8_t axis) {
float steper_position_in_steps = st_get_position(axis); float steper_position_in_steps = st_get_position(axis);
return steper_position_in_steps / axis_steps_per_unit[axis]; return steper_position_in_steps / axis_steps_per_unit[axis];
} }
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
void finishAndDisableSteppers() void finishAndDisableSteppers() {
{
st_synchronize(); st_synchronize();
disable_x(); disable_x();
disable_y(); disable_y();
@ -1104,162 +970,85 @@ void finishAndDisableSteppers()
disable_e3(); disable_e3();
} }
void quickStop() void quickStop() {
{
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
while(blocks_queued()) while (blocks_queued()) plan_discard_current_block();
plan_discard_current_block();
current_block = NULL; current_block = NULL;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
#ifdef BABYSTEPPING #ifdef BABYSTEPPING
// MUST ONLY BE CALLED BY AN ISR,
// No other ISR should ever interrupt this!
void babystep(const uint8_t axis, const bool direction) {
void babystep(const uint8_t axis,const bool direction) #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
{ enable_## axis(); \
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this uint8_t old_pin = AXIS ##_DIR_READ; \
//store initial pin states AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
switch(axis) AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
{ _delay_us(1U); \
case X_AXIS: AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
{ AXIS ##_APPLY_DIR(old_pin, true); \
enable_x();
uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE((INVERT_X_DIR)^direction);
#endif
//perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
X2_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
//get old pin state back.
X_DIR_WRITE(old_x_dir_pin);
#ifdef DUAL_X_CARRIAGE
X2_DIR_WRITE(old_x_dir_pin);
#endif
} }
break;
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Y_DIR_WRITE((INVERT_Y_DIR)^direction);
#ifdef DUAL_Y_CARRIAGE
Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
#endif
//perform step
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond switch(axis) {
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
//get old pin state back. case X_AXIS:
Y_DIR_WRITE(old_y_dir_pin); BABYSTEP_AXIS(x, X, false);
#ifdef DUAL_Y_CARRIAGE break;
Y2_DIR_WRITE(old_y_dir_pin);
#endif
} case Y_AXIS:
BABYSTEP_AXIS(y, Y, false);
break; break;
case Z_AXIS: {
#ifndef DELTA #ifndef DELTA
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
Z_STEP_WRITE( INVERT_Z_STEP_PIN); #else // DELTA
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
//get old pin state back. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
Z_DIR_WRITE(old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
Z2_DIR_WRITE(old_z_dir_pin);
#endif
}
break;
#else //DELTA
case Z_AXIS:
{
enable_x(); enable_x();
enable_y(); enable_y();
enable_z(); enable_z();
uint8_t old_x_dir_pin= X_DIR_READ; uint8_t old_x_dir_pin = X_DIR_READ,
uint8_t old_y_dir_pin= Y_DIR_READ; old_y_dir_pin = Y_DIR_READ,
uint8_t old_z_dir_pin= Z_DIR_READ; old_z_dir_pin = Z_DIR_READ;
//setup new step //setup new step
X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z); X_DIR_WRITE(INVERT_X_DIR^z_direction);
Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z); Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z); Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
//perform step //perform step
X_STEP_WRITE(!INVERT_X_STEP_PIN); X_STEP_WRITE(!INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN); Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN); Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U);
_delay_us(1U); // wait 1 microsecond
X_STEP_WRITE(INVERT_X_STEP_PIN); X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN); Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN); Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back. //get old pin state back.
X_DIR_WRITE(old_x_dir_pin); X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin); Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin); Z_DIR_WRITE(old_z_dir_pin);
}
break;
#endif #endif
} break;
default: break; default: break;
} }
} }
#endif //BABYSTEPPING #endif //BABYSTEPPING
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example // From Arduino DigitalPotControl example
{ void digitalPotWrite(int address, int value) {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
SPI.transfer(address); // send in the address and value via SPI: SPI.transfer(address); // send in the address and value via SPI:
SPI.transfer(value); SPI.transfer(value);
@ -1268,16 +1057,17 @@ void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl e
#endif #endif
} }
void digipot_init() //Initialize Digipot Motor Current // Initialize Digipot Motor Current
{ void digipot_init() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if HAS_DIGIPOTSS
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin(); SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT); pinMode(DIGIPOTSS_PIN, OUTPUT);
for(int i=0;i<=4;i++) for (int i = 0; i <= 4; i++) {
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]);
}
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT); pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
@ -1291,29 +1081,29 @@ void digipot_init() //Initialize Digipot Motor Current
#endif #endif
} }
void digipot_current(uint8_t driver, int current) void digipot_current(uint8_t driver, int current) {
{ #if HAS_DIGIPOTSS
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
digitalPotWrite(digipot_ch[driver], current); digitalPotWrite(digipot_ch[driver], current);
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); switch(driver) {
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE); case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
}
#endif #endif
} }
void microstep_init() void microstep_init() {
{
const uint8_t microstep_modes[] = MICROSTEP_MODES; const uint8_t microstep_modes[] = MICROSTEP_MODES;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
pinMode(E1_MS1_PIN,OUTPUT); pinMode(E1_MS1_PIN,OUTPUT);
pinMode(E1_MS2_PIN,OUTPUT); pinMode(E1_MS2_PIN,OUTPUT);
#endif #endif
#if defined(X_MS1_PIN) && X_MS1_PIN > -1 #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
pinMode(X_MS1_PIN,OUTPUT); pinMode(X_MS1_PIN,OUTPUT);
pinMode(X_MS2_PIN,OUTPUT); pinMode(X_MS2_PIN,OUTPUT);
pinMode(Y_MS1_PIN,OUTPUT); pinMode(Y_MS1_PIN,OUTPUT);
@ -1326,34 +1116,29 @@ void microstep_init()
#endif #endif
} }
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
{ if (ms1 >= 0) switch(driver) {
if(ms1 > -1) switch(driver)
{
case 0: digitalWrite(X_MS1_PIN, ms1); break; case 0: digitalWrite(X_MS1_PIN, ms1); break;
case 1: digitalWrite(Y_MS1_PIN, ms1); break; case 1: digitalWrite(Y_MS1_PIN, ms1); break;
case 2: digitalWrite(Z_MS1_PIN, ms1); break; case 2: digitalWrite(Z_MS1_PIN, ms1); break;
case 3: digitalWrite(E0_MS1_PIN, ms1); break; case 3: digitalWrite(E0_MS1_PIN, ms1); break;
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
case 4: digitalWrite(E1_MS1_PIN, ms1); break; case 4: digitalWrite(E1_MS1_PIN, ms1); break;
#endif #endif
} }
if(ms2 > -1) switch(driver) if (ms2 >= 0) switch(driver) {
{
case 0: digitalWrite(X_MS2_PIN, ms2); break; case 0: digitalWrite(X_MS2_PIN, ms2); break;
case 1: digitalWrite(Y_MS2_PIN, ms2); break; case 1: digitalWrite(Y_MS2_PIN, ms2); break;
case 2: digitalWrite(Z_MS2_PIN, ms2); break; case 2: digitalWrite(Z_MS2_PIN, ms2); break;
case 3: digitalWrite(E0_MS2_PIN, ms2); break; case 3: digitalWrite(E0_MS2_PIN, ms2); break;
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1 #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
case 4: digitalWrite(E1_MS2_PIN, ms2); break; case 4: digitalWrite(E1_MS2_PIN, ms2); break;
#endif #endif
} }
} }
void microstep_mode(uint8_t driver, uint8_t stepping_mode) void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
{ switch(stepping_mode) {
switch(stepping_mode)
{
case 1: microstep_ms(driver,MICROSTEP1); break; case 1: microstep_ms(driver,MICROSTEP1); break;
case 2: microstep_ms(driver,MICROSTEP2); break; case 2: microstep_ms(driver,MICROSTEP2); break;
case 4: microstep_ms(driver,MICROSTEP4); break; case 4: microstep_ms(driver,MICROSTEP4); break;
@ -1362,8 +1147,7 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode)
} }
} }
void microstep_readings() void microstep_readings() {
{
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n"); SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOLPGM("X: ");
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
@ -1377,7 +1161,7 @@ void microstep_readings()
SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOLPGM("E0: ");
SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1 #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOLPGM("E1: ");
SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN)); SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));

@ -25,26 +25,26 @@
#include "stepper_indirection.h" #include "stepper_indirection.h"
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}} #define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}} #define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}} #define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
#elif EXTRUDERS > 2 #elif EXTRUDERS > 2
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}} #define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}} #define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}} #define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
#elif EXTRUDERS > 1 #elif EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE #ifndef DUAL_X_CARRIAGE
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#else #else
extern bool extruder_duplication_enabled; extern bool extruder_duplication_enabled;
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }} #define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }} #define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }} #define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#endif #endif
#else #else
#define WRITE_E_STEP(v) E0_STEP_WRITE(v) #define E_STEP_WRITE(v) E0_STEP_WRITE(v)
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR) #define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR) #define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
#endif #endif

@ -75,6 +75,10 @@
//============================= public variables ============================ //============================= public variables ============================
//=========================================================================== //===========================================================================
#ifdef K1 // Defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
#endif
// Sampling period of the temperature routine // Sampling period of the temperature routine
#ifdef PID_dT #ifdef PID_dT
#undef PID_dT #undef PID_dT
@ -127,8 +131,6 @@ static volatile bool temp_meas_ready = false;
static float pid_error[EXTRUDERS]; static float pid_error[EXTRUDERS];
static float temp_iState_min[EXTRUDERS]; static float temp_iState_min[EXTRUDERS];
static float temp_iState_max[EXTRUDERS]; static float temp_iState_max[EXTRUDERS];
// static float pid_input[EXTRUDERS];
// static float pid_output[EXTRUDERS];
static bool pid_reset[EXTRUDERS]; static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
@ -546,34 +548,11 @@ void bed_max_temp_error(void) {
_temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED); _temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED);
} }
void manage_heater() { float get_pid_output(int e) {
float pid_output;
if (!temp_meas_ready) return;
float pid_input, pid_output;
updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675
float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675
unsigned long ms = millis();
// Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) {
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
#endif
#ifdef PIDTEMP #ifdef PIDTEMP
pid_input = current_temperature[e];
#ifndef PID_OPENLOOP #ifndef PID_OPENLOOP
pid_error[e] = target_temperature[e] - pid_input; pid_error[e] = target_temperature[e] - current_temperature[e];
if (pid_error[e] > PID_FUNCTIONAL_RANGE) { if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX; pid_output = BANG_MAX;
pid_reset[e] = true; pid_reset[e] = true;
@ -583,7 +562,7 @@ void manage_heater() {
pid_reset[e] = true; pid_reset[e] = true;
} }
else { else {
if (pid_reset[e] == true) { if (pid_reset[e]) {
temp_iState[e] = 0.0; temp_iState[e] = 0.0;
pid_reset[e] = false; pid_reset[e] = false;
} }
@ -592,9 +571,7 @@ void manage_heater() {
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]); temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e]; iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
//K1 defined in Configuration.h in the PID settings dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
#define K2 (1.0-K1)
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e])) * K2 + (K1 * dTerm[e]);
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) { if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
@ -605,7 +582,7 @@ void manage_heater() {
pid_output = 0; pid_output = 0;
} }
} }
temp_dState[e] = pid_input; temp_dState[e] = current_temperature[e];
#else #else
pid_output = constrain(target_temperature[e], 0, PID_MAX); pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP #endif //PID_OPENLOOP
@ -615,7 +592,7 @@ void manage_heater() {
SERIAL_ECHO(MSG_PID_DEBUG); SERIAL_ECHO(MSG_PID_DEBUG);
SERIAL_ECHO(e); SERIAL_ECHO(e);
SERIAL_ECHO(MSG_PID_DEBUG_INPUT); SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
SERIAL_ECHO(pid_input); SERIAL_ECHO(current_temperature[e]);
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT); SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
SERIAL_ECHO(pid_output); SERIAL_ECHO(pid_output);
SERIAL_ECHO(MSG_PID_DEBUG_PTERM); SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
@ -627,12 +604,65 @@ void manage_heater() {
#endif //PID_DEBUG #endif //PID_DEBUG
#else /* PID off */ #else /* PID off */
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
#endif
return pid_output;
}
#ifdef PIDTEMPBED
float get_pid_output_bed() {
float pid_output;
#ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - current_temperature_bed;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = bedKi * temp_iState_bed;
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
temp_dState_bed = current_temperature_bed;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0; pid_output = 0;
if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX; }
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
return pid_output;
}
#endif
void manage_heater() {
if (!temp_meas_ready) return;
updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675
float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675
unsigned long ms = millis();
// Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) {
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
#endif #endif
float pid_output = get_pid_output(e);
// Check if temperature is within the correct range // Check if temperature is within the correct range
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0; soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
@ -678,33 +708,7 @@ void manage_heater() {
#endif #endif
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
pid_input = current_temperature_bed; float pid_output = get_pid_output_bed();
#ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - pid_input;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = bedKi * temp_iState_bed;
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm_bed = (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
temp_dState_bed = pid_input;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
@ -878,8 +882,8 @@ void tp_init()
{ {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD); MCUCR=BIT(JTD);
MCUCR=(1<<JTD); MCUCR=BIT(JTD);
#endif #endif
// Finish init of mult extruder arrays // Finish init of mult extruder arrays
@ -937,13 +941,13 @@ void tp_init()
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
#ifdef DIDR2 #ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0) #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
#else #else
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0) #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
#endif #endif
// Set analog inputs // Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
DIDR0 = 0; DIDR0 = 0;
#ifdef DIDR2 #ifdef DIDR2
DIDR2 = 0; DIDR2 = 0;
@ -970,7 +974,7 @@ void tp_init()
// Use timer0 for temperature measurement // Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt // Interleave temperature interrupt with millies interrupt
OCR0B = 128; OCR0B = 128;
TIMSK0 |= (1<<OCIE0B); TIMSK0 |= BIT(OCIE0B);
// Wait for temperature measurement to settle // Wait for temperature measurement to settle
delay(250); delay(250);
@ -1174,12 +1178,12 @@ void disable_heater() {
max6675_temp = 0; max6675_temp = 0;
#ifdef PRR #ifdef PRR
PRR &= ~(1<<PRSPI); PRR &= ~BIT(PRSPI);
#elif defined(PRR0) #elif defined(PRR0)
PRR0 &= ~(1<<PRSPI); PRR0 &= ~BIT(PRSPI);
#endif #endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0); SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
// enable TT_MAX6675 // enable TT_MAX6675
WRITE(MAX6675_SS, 0); WRITE(MAX6675_SS, 0);
@ -1190,13 +1194,13 @@ void disable_heater() {
// read MSB // read MSB
SPDR = 0; SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;); for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp = SPDR; max6675_temp = SPDR;
max6675_temp <<= 8; max6675_temp <<= 8;
// read LSB // read LSB
SPDR = 0; SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;); for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp |= SPDR; max6675_temp |= SPDR;
// disable TT_MAX6675 // disable TT_MAX6675
@ -1246,7 +1250,7 @@ ISR(TIMER0_COMPB_vect) {
static unsigned long raw_temp_3_value = 0; static unsigned long raw_temp_3_value = 0;
static unsigned long raw_temp_bed_value = 0; static unsigned long raw_temp_bed_value = 0;
static TempState temp_state = StartupDelay; static TempState temp_state = StartupDelay;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE); static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
// Static members for each heater // Static members for each heater
#ifdef SLOW_PWM_HEATERS #ifdef SLOW_PWM_HEATERS
@ -1331,7 +1335,7 @@ ISR(TIMER0_COMPB_vect) {
if (soft_pwm_fan < pwm_count) WRITE_FAN(0); if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif #endif
pwm_count += (1 << SOFT_PWM_SCALE); pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7f;
#else // SLOW_PWM_HEATERS #else // SLOW_PWM_HEATERS
@ -1412,7 +1416,7 @@ ISR(TIMER0_COMPB_vect) {
if (soft_pwm_fan < pwm_count) WRITE_FAN(0); if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM #endif //FAN_SOFT_PWM
pwm_count += (1 << SOFT_PWM_SCALE); pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f; pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
@ -1438,9 +1442,9 @@ ISR(TIMER0_COMPB_vect) {
#endif // SLOW_PWM_HEATERS #endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
#ifdef MUX5 #ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else #else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin) #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif #endif

@ -1426,7 +1426,7 @@ void lcd_buttons_update() {
WRITE(SHIFT_LD, HIGH); WRITE(SHIFT_LD, HIGH);
for(int8_t i = 0; i < 8; i++) { for(int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad >>= 1; newbutton_reprapworld_keypad >>= 1;
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7); if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= BIT(7);
WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW); WRITE(SHIFT_CLK, LOW);
} }
@ -1439,7 +1439,7 @@ void lcd_buttons_update() {
unsigned char tmp_buttons = 0; unsigned char tmp_buttons = 0;
for(int8_t i=0; i<8; i++) { for(int8_t i=0; i<8; i++) {
newbutton >>= 1; newbutton >>= 1;
if (READ(SHIFT_OUT)) newbutton |= (1 << 7); if (READ(SHIFT_OUT)) newbutton |= BIT(7);
WRITE(SHIFT_CLK, HIGH); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW); WRITE(SHIFT_CLK, LOW);
} }

@ -57,20 +57,20 @@
void lcd_ignore_click(bool b=true); void lcd_ignore_click(bool b=true);
#ifdef NEWPANEL #ifdef NEWPANEL
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define LCD_CLICKED (buttons&EN_C) #define LCD_CLICKED (buttons&EN_C)
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3) #define EN_REPRAPWORLD_KEYPAD_F3 BIT(BLEN_REPRAPWORLD_KEYPAD_F3)
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2) #define EN_REPRAPWORLD_KEYPAD_F2 BIT(BLEN_REPRAPWORLD_KEYPAD_F2)
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1) #define EN_REPRAPWORLD_KEYPAD_F1 BIT(BLEN_REPRAPWORLD_KEYPAD_F1)
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP) #define EN_REPRAPWORLD_KEYPAD_UP BIT(BLEN_REPRAPWORLD_KEYPAD_UP)
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT) #define EN_REPRAPWORLD_KEYPAD_RIGHT BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT)
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE) #define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN) #define EN_REPRAPWORLD_KEYPAD_DOWN BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN)
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT) #define EN_REPRAPWORLD_KEYPAD_LEFT BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT)
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1)) #define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2) #define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
@ -83,14 +83,14 @@
#endif //REPRAPWORLD_KEYPAD #endif //REPRAPWORLD_KEYPAD
#else #else
//atomic, do not change //atomic, do not change
#define B_LE (1<<BL_LE) #define B_LE BIT(BL_LE)
#define B_UP (1<<BL_UP) #define B_UP BIT(BL_UP)
#define B_MI (1<<BL_MI) #define B_MI BIT(BL_MI)
#define B_DW (1<<BL_DW) #define B_DW BIT(BL_DW)
#define B_RI (1<<BL_RI) #define B_RI BIT(BL_RI)
#define B_ST (1<<BL_ST) #define B_ST BIT(BL_ST)
#define EN_B (1<<BLEN_B) #define EN_B BIT(BLEN_B)
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST)) #define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
#endif//NEWPANEL #endif//NEWPANEL

@ -24,13 +24,13 @@
#define BLEN_B 1 #define BLEN_B 1
#define BLEN_A 0 #define BLEN_A 0
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2 #define EN_B BIT(BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
#define EN_A (1<<BLEN_A) #define EN_A BIT(BLEN_A)
#if defined(BTN_ENC) && BTN_ENC > -1 #if defined(BTN_ENC) && BTN_ENC > -1
// encoder click is directly connected // encoder click is directly connected
#define BLEN_C 2 #define BLEN_C 2
#define EN_C (1<<BLEN_C) #define EN_C BIT(BLEN_C)
#endif #endif
// //
@ -85,14 +85,14 @@
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values #define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_F1 BIT((BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_UP BIT((BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_RIGHT BIT((BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT((BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET)) #define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1)) #define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN) #define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
@ -113,12 +113,12 @@
#define BL_ST 2 #define BL_ST 2
//automatic, do not change //automatic, do not change
#define B_LE (1<<BL_LE) #define B_LE BIT(BL_LE)
#define B_UP (1<<BL_UP) #define B_UP BIT(BL_UP)
#define B_MI (1<<BL_MI) #define B_MI BIT(BL_MI)
#define B_DW (1<<BL_DW) #define B_DW BIT(BL_DW)
#define B_RI (1<<BL_RI) #define B_RI BIT(BL_RI)
#define B_ST (1<<BL_ST) #define B_ST BIT(BL_ST)
#define LCD_CLICKED (buttons&(B_MI|B_ST)) #define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif #endif

@ -27,9 +27,15 @@ static void ST7920_SWSPI_SND_8BIT(uint8_t val)
for( i=0; i<8; i++ ) for( i=0; i<8; i++ )
{ {
WRITE(ST7920_CLK_PIN,0); WRITE(ST7920_CLK_PIN,0);
#if F_CPU == 20000000
__asm__("nop\n\t");
#endif
WRITE(ST7920_DAT_PIN,val&0x80); WRITE(ST7920_DAT_PIN,val&0x80);
val<<=1; val<<=1;
WRITE(ST7920_CLK_PIN,1); WRITE(ST7920_CLK_PIN,1);
#if F_CPU == 20000000
__asm__("nop\n\t""nop\n\t");
#endif
} }
} }

@ -79,11 +79,11 @@ void vector_3::debug(char* title)
{ {
SERIAL_PROTOCOL(title); SERIAL_PROTOCOL(title);
SERIAL_PROTOCOLPGM(" x: "); SERIAL_PROTOCOLPGM(" x: ");
SERIAL_PROTOCOL(x); SERIAL_PROTOCOL_F(x, 6);
SERIAL_PROTOCOLPGM(" y: "); SERIAL_PROTOCOLPGM(" y: ");
SERIAL_PROTOCOL(y); SERIAL_PROTOCOL_F(y, 6);
SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(z); SERIAL_PROTOCOL_F(z, 6);
SERIAL_EOL; SERIAL_EOL;
} }
@ -150,7 +150,7 @@ void matrix_3x3::debug(char* title) {
int count = 0; int count = 0;
for(int i=0; i<3; i++) { for(int i=0; i<3; i++) {
for(int j=0; j<3; j++) { for(int j=0; j<3; j++) {
SERIAL_PROTOCOL(matrix[count] + 0.0001); SERIAL_PROTOCOL_F(matrix[count], 6);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
count++; count++;
} }

Loading…
Cancel
Save