Apply const, spacing to Marlin_main.cpp

master
Scott Lahteine 8 years ago
parent e97f1284c1
commit 4ce2a63db0

@ -1091,7 +1091,7 @@ inline void get_serial_commands() {
if (IsStopped()) { if (IsStopped()) {
char* gpos = strchr(command, 'G'); char* gpos = strchr(command, 'G');
if (gpos) { if (gpos) {
int codenum = strtol(gpos + 1, NULL, 10); const int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) { switch (codenum) {
case 0: case 0:
case 1: case 1:
@ -4927,14 +4927,12 @@ inline void gcode_G28() {
* S = Stows the probe if 1 (default=1) * S = Stows the probe if 1 (default=1)
*/ */
inline void gcode_G30() { inline void gcode_G30() {
float X_probe_location = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
Y_probe_location = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
if (!position_is_reachable(pos, true)) return; if (!position_is_reachable(pos, true)) return;
bool stow = code_seen('S') ? code_value_bool() : true;
// Disable leveling so the planner won't mess with us // Disable leveling so the planner won't mess with us
#if PLANNER_LEVELING #if PLANNER_LEVELING
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
@ -4942,14 +4940,11 @@ inline void gcode_G28() {
setup_for_endstop_or_probe_move(); setup_for_endstop_or_probe_move();
float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1); const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
SERIAL_PROTOCOL(FIXFLOAT(X_probe_location)); SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
clean_up_after_endstop_or_probe_move(); clean_up_after_endstop_or_probe_move();
@ -5466,7 +5461,7 @@ inline void gcode_G92() {
* M1: Conditional stop - Wait for user button press on LCD * M1: Conditional stop - Wait for user button press on LCD
*/ */
inline void gcode_M0_M1() { inline void gcode_M0_M1() {
char* args = current_command_args; const char * const args = current_command_args;
millis_t codenum = 0; millis_t codenum = 0;
bool hasP = false, hasS = false; bool hasP = false, hasS = false;
@ -5524,7 +5519,7 @@ inline void gcode_G92() {
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
} }
#endif // EMERGENCY_PARSER || ULTIPANEL #endif // HAS_RESUME_CONTINUE
/** /**
* M17: Enable power on all stepper motors * M17: Enable power on all stepper motors
@ -11210,19 +11205,20 @@ void prepare_move_to_destination() {
*/ */
void plan_arc( void plan_arc(
float logical[XYZE], // Destination position float logical[XYZE], // Destination position
float* offset, // Center of rotation relative to current_position float *offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise? uint8_t clockwise // Clockwise?
) { ) {
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]), float r_X = -offset[X_AXIS], // Radius vector from center to current location
center_X = current_position[X_AXIS] + offset[X_AXIS], r_Y = -offset[Y_AXIS];
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS], const float radius = HYPOT(r_X, r_Y),
extruder_travel = logical[E_AXIS] - current_position[E_AXIS], center_X = current_position[X_AXIS] - r_X,
r_X = -offset[X_AXIS], // Radius vector from center to current location center_Y = current_position[Y_AXIS] - r_Y,
r_Y = -offset[Y_AXIS],
rt_X = logical[X_AXIS] - center_X, rt_X = logical[X_AXIS] - center_X,
rt_Y = logical[Y_AXIS] - center_Y; rt_Y = logical[Y_AXIS] - center_Y,
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
@ -11266,8 +11262,8 @@ void prepare_move_to_destination() {
* This is important when there are successive arc motions. * This is important when there are successive arc motions.
*/ */
// Vector rotation matrix values // Vector rotation matrix values
float arc_target[XYZE], float arc_target[XYZE];
theta_per_segment = angular_travel / segments, const float theta_per_segment = angular_travel / segments,
linear_per_segment = linear_travel / segments, linear_per_segment = linear_travel / segments,
extruder_per_segment = extruder_travel / segments, extruder_per_segment = extruder_travel / segments,
sin_T = theta_per_segment, sin_T = theta_per_segment,
@ -11279,7 +11275,7 @@ void prepare_move_to_destination() {
// Initialize the extruder axis // Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS]; arc_target[E_AXIS] = current_position[E_AXIS];
float fr_mm_s = MMS_SCALED(feedrate_mm_s); const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
millis_t next_idle_ms = millis() + 200UL; millis_t next_idle_ms = millis() + 200UL;
@ -11294,7 +11290,7 @@ void prepare_move_to_destination() {
if (++count < N_ARC_CORRECTION) { if (++count < N_ARC_CORRECTION) {
// Apply vector rotation matrix to previous r_X / 1 // Apply vector rotation matrix to previous r_X / 1
float r_new_Y = r_X * sin_T + r_Y * cos_T; const float r_new_Y = r_X * sin_T + r_Y * cos_T;
r_X = r_X * cos_T - r_Y * sin_T; r_X = r_X * cos_T - r_Y * sin_T;
r_Y = r_new_Y; r_Y = r_new_Y;
} }
@ -11303,7 +11299,7 @@ void prepare_move_to_destination() {
// Compute exact location by applying transformation matrix from initial radius vector(=-offset). // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
// To reduce stuttering, the sin and cos could be computed at different times. // To reduce stuttering, the sin and cos could be computed at different times.
// For now, compute both at the same time. // For now, compute both at the same time.
float cos_Ti = cos(i * theta_per_segment), const float cos_Ti = cos(i * theta_per_segment),
sin_Ti = sin(i * theta_per_segment); sin_Ti = sin(i * theta_per_segment);
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
@ -11818,30 +11814,15 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
enable_E0(); enable_E0();
#else // !SWITCHING_EXTRUDER #else // !SWITCHING_EXTRUDER
switch (active_extruder) { switch (active_extruder) {
case 0: case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
oldstatus = E0_ENABLE_READ;
enable_E0();
break;
#if E_STEPPERS > 1 #if E_STEPPERS > 1
case 1: case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
oldstatus = E1_ENABLE_READ;
enable_E1();
break;
#if E_STEPPERS > 2 #if E_STEPPERS > 2
case 2: case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
oldstatus = E2_ENABLE_READ;
enable_E2();
break;
#if E_STEPPERS > 3 #if E_STEPPERS > 3
case 3: case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
oldstatus = E3_ENABLE_READ;
enable_E3();
break;
#if E_STEPPERS > 4 #if E_STEPPERS > 4
case 4: case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
oldstatus = E4_ENABLE_READ;
enable_E4();
break;
#endif // E_STEPPERS > 4 #endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3 #endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2 #endif // E_STEPPERS > 2
@ -11861,25 +11842,15 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
E0_ENABLE_WRITE(oldstatus); E0_ENABLE_WRITE(oldstatus);
#else #else
switch (active_extruder) { switch (active_extruder) {
case 0: case 0: E0_ENABLE_WRITE(oldstatus); break;
E0_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 1 #if E_STEPPERS > 1
case 1: case 1: E1_ENABLE_WRITE(oldstatus); break;
E1_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 2 #if E_STEPPERS > 2
case 2: case 2: E2_ENABLE_WRITE(oldstatus); break;
E2_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 3 #if E_STEPPERS > 3
case 3: case 3: E3_ENABLE_WRITE(oldstatus); break;
E3_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 4 #if E_STEPPERS > 4
case 4: case 4: E4_ENABLE_WRITE(oldstatus); break;
E4_ENABLE_WRITE(oldstatus);
break;
#endif // E_STEPPERS > 4 #endif // E_STEPPERS > 4
#endif // E_STEPPERS > 3 #endif // E_STEPPERS > 3
#endif // E_STEPPERS > 2 #endif // E_STEPPERS > 2

Loading…
Cancel
Save