Macros to loop over axes

master
Scott Lahteine 8 years ago
parent a3b5d5eb65
commit 4e67a85a5d

@ -1524,8 +1524,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
if (axis == X_AXIS || axis == Y_AXIS) { if (axis == X_AXIS || axis == Y_AXIS) {
float homeposition[3]; float homeposition[3];
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
@ -2597,7 +2596,7 @@ static void homeaxis(AxisEnum axis) {
* - Set the feedrate, if included * - Set the feedrate, if included
*/ */
void gcode_get_destination() { void gcode_get_destination() {
for (int i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
else else
@ -3900,7 +3899,7 @@ inline void gcode_G92() {
if (!didE) stepper.synchronize(); if (!didE) stepper.synchronize();
bool didXYZ = false; bool didXYZ = false;
for (int i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
float p = current_position[i], float p = current_position[i],
v = code_value_axis_units(i); v = code_value_axis_units(i);
@ -5147,7 +5146,7 @@ inline void gcode_M85() {
* (Follows the same syntax as G92) * (Follows the same syntax as G92)
*/ */
inline void gcode_M92() { inline void gcode_M92() {
for (int8_t i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
if (i == E_AXIS) { if (i == E_AXIS) {
float value = code_value_per_axis_unit(i); float value = code_value_per_axis_unit(i);
@ -5339,7 +5338,7 @@ inline void gcode_M200() {
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*/ */
inline void gcode_M201() { inline void gcode_M201() {
for (int8_t i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i); planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
} }
@ -5350,7 +5349,7 @@ inline void gcode_M201() {
#if 0 // Not used for Sprinter/grbl gen6 #if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() { inline void gcode_M202() {
for (int8_t i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i]; if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
} }
} }
@ -5361,7 +5360,7 @@ inline void gcode_M201() {
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
*/ */
inline void gcode_M203() { inline void gcode_M203() {
for (int8_t i = 0; i < NUM_AXIS; i++) LOOP_XYZE(i)
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
planner.max_feedrate_mm_s[i] = code_value_axis_units(i); planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
} }
@ -5421,7 +5420,7 @@ inline void gcode_M205() {
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/ */
inline void gcode_M206() { inline void gcode_M206() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) LOOP_XYZ(i)
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
set_home_offset((AxisEnum)i, code_value_axis_units(i)); set_home_offset((AxisEnum)i, code_value_axis_units(i));
@ -5463,7 +5462,7 @@ inline void gcode_M206() {
SERIAL_ECHOLNPGM(">>> gcode_M666"); SERIAL_ECHOLNPGM(">>> gcode_M666");
} }
#endif #endif
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { LOOP_XYZ(i) {
if (code_seen(axis_codes[i])) { if (code_seen(axis_codes[i])) {
endstop_adj[i] = code_value_axis_units(i); endstop_adj[i] = code_value_axis_units(i);
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -5955,7 +5954,7 @@ inline void gcode_M303() {
* M365: SCARA calibration: Scaling factor, X, Y, Z axis * M365: SCARA calibration: Scaling factor, X, Y, Z axis
*/ */
inline void gcode_M365() { inline void gcode_M365() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) LOOP_XYZ(i)
if (code_seen(axis_codes[i])) if (code_seen(axis_codes[i]))
axis_scaling[i] = code_value_float(); axis_scaling[i] = code_value_float();
} }
@ -6155,7 +6154,7 @@ void quickstop_stepper() {
*/ */
inline void gcode_M428() { inline void gcode_M428() {
bool err = false; bool err = false;
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { LOOP_XYZ(i) {
if (axis_homed[i]) { if (axis_homed[i]) {
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
diff = current_position[i] - LOGICAL_POSITION(base, i); diff = current_position[i] - LOGICAL_POSITION(base, i);
@ -6285,7 +6284,7 @@ inline void gcode_M503() {
float lastpos[NUM_AXIS]; float lastpos[NUM_AXIS];
// Save current position of all axes // Save current position of all axes
for (uint8_t i = 0; i < NUM_AXIS; i++) LOOP_XYZE(i)
lastpos[i] = destination[i] = current_position[i]; lastpos[i] = destination[i] = current_position[i];
// Define runplan for move axes // Define runplan for move axes
@ -6506,7 +6505,7 @@ inline void gcode_M503() {
*/ */
inline void gcode_M907() { inline void gcode_M907() {
#if HAS_DIGIPOTSS #if HAS_DIGIPOTSS
for (int i = 0; i < NUM_AXIS; i++) LOOP_XYZE(i)
if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int()); if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
if (code_seen('B')) stepper.digipot_current(4, code_value_int()); if (code_seen('B')) stepper.digipot_current(4, code_value_int());
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int()); if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
@ -6522,7 +6521,7 @@ inline void gcode_M907() {
#endif #endif
#if ENABLED(DIGIPOT_I2C) #if ENABLED(DIGIPOT_I2C)
// this one uses actual amps in floating point // this one uses actual amps in floating point
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float()); LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...) // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float()); for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
#endif #endif
@ -6531,7 +6530,7 @@ inline void gcode_M907() {
float dac_percent = code_value_float(); float dac_percent = code_value_float();
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent); for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
} }
for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float()); LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
#endif #endif
} }
@ -6570,7 +6569,7 @@ inline void gcode_M907() {
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() { inline void gcode_M350() {
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte()); if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte()); LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
if (code_seen('B')) stepper.microstep_mode(4, code_value_byte()); if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
stepper.microstep_readings(); stepper.microstep_readings();
} }
@ -6582,11 +6581,11 @@ inline void gcode_M907() {
inline void gcode_M351() { inline void gcode_M351() {
if (code_seen('S')) switch (code_value_byte()) { if (code_seen('S')) switch (code_value_byte()) {
case 1: case 1:
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1); LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1); if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
break; break;
case 2: case 2:
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte()); LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte()); if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
break; break;
} }
@ -8013,7 +8012,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
@ -8031,7 +8030,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
float fraction = float(s) * inv_steps; float fraction = float(s) * inv_steps;
for (int8_t i = 0; i < NUM_AXIS; i++) LOOP_XYZE(i)
target[i] = current_position[i] + difference[i] * fraction; target[i] = current_position[i] + difference[i] * fraction;
inverse_kinematics(target); inverse_kinematics(target);

@ -563,7 +563,7 @@ void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE; float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION; long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (uint8_t i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
planner.axis_steps_per_mm[i] = tmp1[i]; planner.axis_steps_per_mm[i] = tmp1[i];
planner.max_feedrate_mm_s[i] = tmp2[i]; planner.max_feedrate_mm_s[i] = tmp2[i];
planner.max_acceleration_mm_per_s2[i] = tmp3[i]; planner.max_acceleration_mm_per_s2[i] = tmp3[i];

@ -45,6 +45,9 @@ enum AxisEnum {
Z_HEAD = 5 Z_HEAD = 5
}; };
#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++)
#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++)
typedef enum { typedef enum {
LINEARUNIT_MM, LINEARUNIT_MM,
LINEARUNIT_INCH LINEARUNIT_INCH

@ -134,7 +134,7 @@ Planner::Planner() { init(); }
void Planner::init() { void Planner::init() {
block_buffer_head = block_buffer_tail = 0; block_buffer_head = block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position memset(position, 0, sizeof(position)); // clear position
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; LOOP_XYZE(i) previous_speed[i] = 0.0;
previous_nominal_speed = 0.0; previous_nominal_speed = 0.0;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
bed_level_matrix.set_to_identity(); bed_level_matrix.set_to_identity();
@ -423,7 +423,7 @@ void Planner::check_axes_activity() {
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block = &block_buffer[b]; block = &block_buffer[b];
for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++; LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
} }
} }
#if ENABLED(DISABLE_X) #if ENABLED(DISABLE_X)
@ -893,7 +893,7 @@ void Planner::check_axes_activity() {
// Calculate and limit speed in mm/sec for each axis // Calculate and limit speed in mm/sec for each axis
float current_speed[NUM_AXIS]; float current_speed[NUM_AXIS];
float speed_factor = 1.0; //factor <=1 do decrease speed float speed_factor = 1.0; //factor <=1 do decrease speed
for (int i = 0; i < NUM_AXIS; i++) { LOOP_XYZE(i) {
current_speed[i] = delta_mm[i] * inverse_second; current_speed[i] = delta_mm[i] * inverse_second;
float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i]; float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
if (cs > mf) speed_factor = min(speed_factor, mf / cs); if (cs > mf) speed_factor = min(speed_factor, mf / cs);
@ -939,7 +939,7 @@ void Planner::check_axes_activity() {
// Correct the speed // Correct the speed
if (speed_factor < 1.0) { if (speed_factor < 1.0) {
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor; LOOP_XYZE(i) current_speed[i] *= speed_factor;
block->nominal_speed *= speed_factor; block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor; block->nominal_rate *= speed_factor;
} }
@ -1051,7 +1051,7 @@ void Planner::check_axes_activity() {
block->recalculate_flag = true; // Always calculate trapezoid for new block block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed // Update previous path unit_vector and nominal speed
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i]; LOOP_XYZE(i) previous_speed[i] = current_speed[i];
previous_nominal_speed = block->nominal_speed; previous_nominal_speed = block->nominal_speed;
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
@ -1098,7 +1098,7 @@ void Planner::check_axes_activity() {
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
// Update position // Update position
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i]; LOOP_XYZE(i) position[i] = target[i];
recalculate(); recalculate();
@ -1155,7 +1155,7 @@ void Planner::check_axes_activity() {
stepper.set_position(nx, ny, nz, ne); stepper.set_position(nx, ny, nz, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; LOOP_XYZE(i) previous_speed[i] = 0.0;
} }
/** /**
@ -1168,7 +1168,7 @@ void Planner::set_e_position_mm(const float& e) {
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner::reset_acceleration_rates() { void Planner::reset_acceleration_rates() {
for (int i = 0; i < NUM_AXIS; i++) LOOP_XYZE(i)
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i]; max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
} }

Loading…
Cancel
Save