Merge pull request #8721 from thinkyhead/bf1_better_reverse_pass

[1.1.x] Improved Planner::reverse_pass
master
Scott Lahteine 7 years ago committed by GitHub
commit 4f465c2d07
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -247,7 +247,7 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
// The kernel called by recalculate() when scanning the plan from last to first entry. // The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) { void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
if (!current || !next) return; if (!current || !next) return;
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
@ -268,31 +268,25 @@ void Planner::reverse_pass_kernel(block_t* const current, const block_t *next) {
* Once in reverse and once forward. This implements the reverse pass. * Once in reverse and once forward. This implements the reverse pass.
*/ */
void Planner::reverse_pass() { void Planner::reverse_pass() {
if (movesplanned() > 3) { if (movesplanned() > 3) {
const uint8_t endnr = BLOCK_MOD(block_buffer_tail + 2); // tail is running. tail+1 shouldn't be altered because it's connected to the running block.
block_t* block[3] = { NULL, NULL, NULL }; // tail+2 because the index is not yet advanced when checked
uint8_t blocknr = prev_block_index(block_buffer_head);
// Make a local copy of block_buffer_tail, because the interrupt can alter it block_t* current = &block_buffer[blocknr];
// Is a critical section REALLY needed for a single byte change?
//CRITICAL_SECTION_START; do {
uint8_t tail = block_buffer_tail; const block_t * const next = current;
//CRITICAL_SECTION_END blocknr = prev_block_index(blocknr);
current = &block_buffer[blocknr];
uint8_t b = BLOCK_MOD(block_buffer_head - 3); if (TEST(current->flag, BLOCK_BIT_START_FROM_FULL_HALT)) // Up to this every block is already optimized.
while (b != tail) { break;
if (block[0] && TEST(block[0]->flag, BLOCK_BIT_START_FROM_FULL_HALT)) break; reverse_pass_kernel(current, next);
b = prev_block_index(b); } while (blocknr != endnr);
block[2] = block[1];
block[1] = block[0];
block[0] = &block_buffer[b];
reverse_pass_kernel(block[1], block[2]);
}
} }
} }
// The kernel called by recalculate() when scanning the plan from first to last entry. // The kernel called by recalculate() when scanning the plan from first to last entry.
void Planner::forward_pass_kernel(const block_t* previous, block_t* const current) { void Planner::forward_pass_kernel(const block_t * const previous, block_t* const current) {
if (!previous) return; if (!previous) return;
// If the previous block is an acceleration block, but it is not long enough to complete the // If the previous block is an acceleration block, but it is not long enough to complete the
@ -344,8 +338,8 @@ void Planner::recalculate_trapezoids() {
// Recalculate if current block entry or exit junction speed has changed. // Recalculate if current block entry or exit junction speed has changed.
if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
float nom = current->nominal_speed; const float nomr = 1.0 / current->nominal_speed;
calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom); calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr);
CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
} }
} }
@ -353,8 +347,8 @@ void Planner::recalculate_trapezoids() {
} }
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if (next) { if (next) {
float nom = next->nominal_speed; const float nomr = 1.0 / next->nominal_speed;
calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom); calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr);
CBI(next->flag, BLOCK_BIT_RECALCULATE); CBI(next->flag, BLOCK_BIT_RECALCULATE);
} }
} }
@ -1009,7 +1003,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
#endif #endif
); );
} }
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate inverse time for this move. No divide by zero due to previous checks. // Calculate inverse time for this move. No divide by zero due to previous checks.
// Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
@ -1048,7 +1042,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
//FMM update ring buffer used for delay with filament measurements //FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10; constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
// increment counters with next move in e axis // increment counters with next move in e axis
filwidth_e_count += delta_mm[E_AXIS]; filwidth_e_count += delta_mm[E_AXIS];
@ -1345,7 +1339,8 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
#endif // LIN_ADVANCE #endif // LIN_ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); const float bnsr = 1.0 / block->nominal_speed;
calculate_trapezoid_for_block(block, block->entry_speed * bnsr, safe_speed * bnsr);
// Move buffer head // Move buffer head
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;

@ -130,21 +130,30 @@ typedef struct {
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1)) #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner { class Planner {
public: public:
/** /**
* A ring buffer of moves described in steps * The move buffer, calculated in stepper steps
*
* block_buffer is a ring buffer...
*
* head,tail : indexes for write,read
* head==tail : the buffer is empty
* head!=tail : blocks are in the buffer
* head==(tail-1)%size : the buffer is full
*
* Writer of head is Planner::_buffer_line().
* Reader of tail is Stepper::isr(). Always consider tail busy / read-only
*/ */
static block_t block_buffer[BLOCK_BUFFER_SIZE]; static block_t block_buffer[BLOCK_BUFFER_SIZE];
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
block_buffer_tail; block_buffer_tail; // Index of the busy block, if any
#if ENABLED(DISTINCT_E_FACTORS) #if ENABLED(DISTINCT_E_FACTORS)
static uint8_t last_extruder; // Respond to extruder change static uint8_t last_extruder; // Respond to extruder change
#endif #endif
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
@ -152,7 +161,7 @@ class Planner {
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor // May be auto-adjusted by a filament width sensor
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
axis_steps_per_mm[XYZE_N], axis_steps_per_mm[XYZE_N],
steps_to_mm[XYZE_N]; steps_to_mm[XYZE_N];
static uint32_t max_acceleration_steps_per_s2[XYZE_N], static uint32_t max_acceleration_steps_per_s2[XYZE_N],
@ -273,9 +282,9 @@ class Planner {
/** /**
* Number of moves currently in the planner * Number of moves currently in the planner
*/ */
static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); } FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
// Update multipliers based on new diameter measurements // Update multipliers based on new diameter measurements
static void calculate_volumetric_multipliers(); static void calculate_volumetric_multipliers();
@ -529,8 +538,8 @@ class Planner {
/** /**
* Get the index of the next / previous block in the ring buffer * Get the index of the next / previous block in the ring buffer
*/ */
static int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); } static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
static int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); } static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
/** /**
* Calculate the distance (not time) it takes to accelerate * Calculate the distance (not time) it takes to accelerate
@ -565,8 +574,8 @@ class Planner {
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor); static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
static void reverse_pass_kernel(block_t* const current, const block_t *next); static void reverse_pass_kernel(block_t* const current, const block_t * const next);
static void forward_pass_kernel(const block_t *previous, block_t* const current); static void forward_pass_kernel(const block_t * const previous, block_t* const current);
static void reverse_pass(); static void reverse_pass();
static void forward_pass(); static void forward_pass();

@ -222,7 +222,7 @@
z1 = z_values[x1_i][yi]; z1 = z_values[x1_i][yi];
return z1 + xratio * (z_values[min(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array return z1 + xratio * (z_values[min(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
// If it is, it is clamped to the last element of the // If it is, it is clamped to the last element of the
// z_values[][] array and no correction is applied. // z_values[][] array and no correction is applied.
} }
@ -248,7 +248,7 @@
z1 = z_values[xi][y1_i]; z1 = z_values[xi][y1_i];
return z1 + yratio * (z_values[xi][min(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array return z1 + yratio * (z_values[xi][min(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
// If it is, it is clamped to the last element of the // If it is, it is clamped to the last element of the
// z_values[][] array and no correction is applied. // z_values[][] array and no correction is applied.
} }

Loading…
Cancel
Save