|
|
|
@ -117,52 +117,32 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
|
|
|
|
|
float extrude_min_temp = EXTRUDE_MINTEMP;
|
|
|
|
|
#endif
|
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
|
|
|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
|
|
|
|
// Used for the frequency limit
|
|
|
|
|
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
|
|
|
|
static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
|
|
|
|
|
static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
|
|
|
|
|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
|
|
|
|
// Old direction bits. Used for speed calculations
|
|
|
|
|
static unsigned char old_direction_bits = 0;
|
|
|
|
|
// Segment times (in µs). Used for speed calculations
|
|
|
|
|
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
|
|
|
static char meas_sample; //temporary variable to hold filament measurement sample
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Returns the index of the next block in the ring buffer
|
|
|
|
|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
|
|
|
|
static int8_t next_block_index(int8_t block_index) {
|
|
|
|
|
block_index++;
|
|
|
|
|
if (block_index == BLOCK_BUFFER_SIZE) {
|
|
|
|
|
block_index = 0;
|
|
|
|
|
}
|
|
|
|
|
return(block_index);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Returns the index of the previous block in the ring buffer
|
|
|
|
|
static int8_t prev_block_index(int8_t block_index) {
|
|
|
|
|
if (block_index == 0) {
|
|
|
|
|
block_index = BLOCK_BUFFER_SIZE;
|
|
|
|
|
}
|
|
|
|
|
block_index--;
|
|
|
|
|
return(block_index);
|
|
|
|
|
}
|
|
|
|
|
// Get the next / previous index of the next block in the ring buffer
|
|
|
|
|
// NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
|
|
|
|
|
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
|
|
|
|
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
|
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
|
//=============================functions ============================
|
|
|
|
|
//================================ Functions ================================
|
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
|
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
|
|
|
|
// given acceleration:
|
|
|
|
|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
|
|
|
|
|
{
|
|
|
|
|
if (acceleration!=0) {
|
|
|
|
|
return((target_rate*target_rate-initial_rate*initial_rate)/
|
|
|
|
|
(2.0*acceleration));
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
return 0.0; // acceleration was 0, set acceleration distance to 0
|
|
|
|
|
}
|
|
|
|
|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
|
|
|
|
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
|
|
|
|
|
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
|
|
|
@ -170,15 +150,9 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ
|
|
|
|
|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
|
|
|
|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
|
|
|
|
|
{
|
|
|
|
|
if (acceleration!=0) {
|
|
|
|
|
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
|
|
|
|
(4.0*acceleration) );
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
return 0.0; // acceleration was 0, set intersection distance to 0
|
|
|
|
|
}
|
|
|
|
|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
|
|
|
|
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
|
|
|
|
|
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
|
|
|
@ -188,18 +162,12 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
|
|
|
|
unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
|
|
|
|
|
|
|
|
|
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
|
|
|
|
if(initial_rate <120) {
|
|
|
|
|
initial_rate=120;
|
|
|
|
|
}
|
|
|
|
|
if(final_rate < 120) {
|
|
|
|
|
final_rate=120;
|
|
|
|
|
}
|
|
|
|
|
if (initial_rate < 120) initial_rate = 120;
|
|
|
|
|
if (final_rate < 120) final_rate = 120;
|
|
|
|
|
|
|
|
|
|
long acceleration = block->acceleration_st;
|
|
|
|
|
int32_t accelerate_steps =
|
|
|
|
|
ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
|
|
|
|
|
int32_t decelerate_steps =
|
|
|
|
|
floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
|
|
|
|
|
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
|
|
|
|
|
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
|
|
|
|
|
|
|
|
|
|
// Calculate the size of Plateau of Nominal Rate.
|
|
|
|
|
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
|
|
|
|
@ -222,7 +190,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
|
|
|
|
// block->accelerate_until = accelerate_steps;
|
|
|
|
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
|
|
|
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
|
|
|
|
if(block->busy == false) { // Don't update variables if block is busy.
|
|
|
|
|
if (!block->busy) { // Don't update variables if block is busy.
|
|
|
|
|
block->accelerate_until = accelerate_steps;
|
|
|
|
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
|
|
|
|
block->initial_rate = initial_rate;
|
|
|
|
@ -230,7 +198,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
|
|
|
|
#ifdef ADVANCE
|
|
|
|
|
block->initial_advance = initial_advance;
|
|
|
|
|
block->final_advance = final_advance;
|
|
|
|
|
#endif //ADVANCE
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
}
|
|
|
|
@ -252,9 +220,7 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
|
|
|
|
|
|
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
|
|
|
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
|
|
|
|
if(!current) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (!current) return;
|
|
|
|
|
|
|
|
|
|
if (next) {
|
|
|
|
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
|
|
|
@ -264,7 +230,7 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|
|
|
|
|
|
|
|
|
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
|
|
|
|
// for max allowable speed if block is decelerating and nominal length is false.
|
|
|
|
|
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
|
|
|
|
if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
|
|
|
|
|
current->entry_speed = min(current->max_entry_speed,
|
|
|
|
|
max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
|
|
|
|
|
}
|
|
|
|
@ -287,10 +253,9 @@ void planner_reverse_pass() {
|
|
|
|
|
unsigned char tail = block_buffer_tail;
|
|
|
|
|
CRITICAL_SECTION_END
|
|
|
|
|
|
|
|
|
|
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
|
|
|
|
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
|
block_t *block[3] = {
|
|
|
|
|
NULL, NULL, NULL };
|
|
|
|
|
if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
|
|
|
|
|
block_index = BLOCK_MOD(block_buffer_head - 3);
|
|
|
|
|
block_t *block[3] = { NULL, NULL, NULL };
|
|
|
|
|
while (block_index != tail) {
|
|
|
|
|
block_index = prev_block_index(block_index);
|
|
|
|
|
block[2]= block[1];
|
|
|
|
@ -303,9 +268,7 @@ void planner_reverse_pass() {
|
|
|
|
|
|
|
|
|
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
|
|
|
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
|
|
|
|
if(!previous) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (!previous) return;
|
|
|
|
|
|
|
|
|
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
|
|
|
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
|
|
|
@ -329,8 +292,7 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|
|
|
|
// implements the forward pass.
|
|
|
|
|
void planner_forward_pass() {
|
|
|
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
|
block_t *block[3] = {
|
|
|
|
|
NULL, NULL, NULL };
|
|
|
|
|
block_t *block[3] = { NULL, NULL, NULL };
|
|
|
|
|
|
|
|
|
|
while (block_index != block_buffer_head) {
|
|
|
|
|
block[0] = block[1];
|
|
|
|
@ -357,17 +319,17 @@ void planner_recalculate_trapezoids() {
|
|
|
|
|
// Recalculate if current block entry or exit junction speed has changed.
|
|
|
|
|
if (current->recalculate_flag || next->recalculate_flag) {
|
|
|
|
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
|
|
|
|
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
|
|
|
|
|
next->entry_speed/current->nominal_speed);
|
|
|
|
|
float nom = current->nominal_speed;
|
|
|
|
|
calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
|
|
|
|
|
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
block_index = next_block_index( block_index );
|
|
|
|
|
}
|
|
|
|
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
|
|
|
|
if(next != NULL) {
|
|
|
|
|
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
|
|
|
|
MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
|
|
|
|
if (next) {
|
|
|
|
|
float nom = next->nominal_speed;
|
|
|
|
|
calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
|
|
|
|
|
next->recalculate_flag = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -396,104 +358,76 @@ void planner_recalculate() {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void plan_init() {
|
|
|
|
|
block_buffer_head = 0;
|
|
|
|
|
block_buffer_tail = 0;
|
|
|
|
|
block_buffer_head = block_buffer_tail = 0;
|
|
|
|
|
memset(position, 0, sizeof(position)); // clear position
|
|
|
|
|
previous_speed[0] = 0.0;
|
|
|
|
|
previous_speed[1] = 0.0;
|
|
|
|
|
previous_speed[2] = 0.0;
|
|
|
|
|
previous_speed[3] = 0.0;
|
|
|
|
|
for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
|
|
|
|
|
previous_nominal_speed = 0.0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef AUTOTEMP
|
|
|
|
|
void getHighESpeed()
|
|
|
|
|
{
|
|
|
|
|
void getHighESpeed() {
|
|
|
|
|
static float oldt = 0;
|
|
|
|
|
if(!autotemp_enabled){
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
|
|
|
|
|
return; //do nothing
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!autotemp_enabled) return;
|
|
|
|
|
if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
|
|
|
|
|
|
|
|
|
|
float high = 0.0;
|
|
|
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
|
|
|
|
|
|
while (block_index != block_buffer_head) {
|
|
|
|
|
if((block_buffer[block_index].steps_x != 0) ||
|
|
|
|
|
(block_buffer[block_index].steps_y != 0) ||
|
|
|
|
|
(block_buffer[block_index].steps_z != 0)) {
|
|
|
|
|
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
|
|
|
|
|
//se; mm/sec;
|
|
|
|
|
if(se>high)
|
|
|
|
|
{
|
|
|
|
|
high=se;
|
|
|
|
|
}
|
|
|
|
|
block_t *block = &block_buffer[block_index];
|
|
|
|
|
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
|
|
|
|
|
float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
|
|
|
|
|
if (se > high) high = se;
|
|
|
|
|
}
|
|
|
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
|
block_index = next_block_index(block_index);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float g=autotemp_min+high*autotemp_factor;
|
|
|
|
|
float t=g;
|
|
|
|
|
if(t<autotemp_min)
|
|
|
|
|
t=autotemp_min;
|
|
|
|
|
if(t>autotemp_max)
|
|
|
|
|
t=autotemp_max;
|
|
|
|
|
if(oldt>t)
|
|
|
|
|
{
|
|
|
|
|
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
|
|
|
|
|
}
|
|
|
|
|
float t = autotemp_min + high * autotemp_factor;
|
|
|
|
|
if (t < autotemp_min) t = autotemp_min;
|
|
|
|
|
if (t > autotemp_max) t = autotemp_max;
|
|
|
|
|
if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t;
|
|
|
|
|
oldt = t;
|
|
|
|
|
setTargetHotend0(t);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
void check_axes_activity()
|
|
|
|
|
{
|
|
|
|
|
unsigned char x_active = 0;
|
|
|
|
|
unsigned char y_active = 0;
|
|
|
|
|
unsigned char z_active = 0;
|
|
|
|
|
unsigned char e_active = 0;
|
|
|
|
|
unsigned char tail_fan_speed = fanSpeed;
|
|
|
|
|
void check_axes_activity() {
|
|
|
|
|
unsigned char axis_active[NUM_AXIS],
|
|
|
|
|
tail_fan_speed = fanSpeed;
|
|
|
|
|
#ifdef BARICUDA
|
|
|
|
|
unsigned char tail_valve_pressure = ValvePressure;
|
|
|
|
|
unsigned char tail_e_to_p_pressure = EtoPPressure;
|
|
|
|
|
unsigned char tail_valve_pressure = ValvePressure,
|
|
|
|
|
tail_e_to_p_pressure = EtoPPressure;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
block_t *block;
|
|
|
|
|
|
|
|
|
|
if(block_buffer_tail != block_buffer_head)
|
|
|
|
|
{
|
|
|
|
|
if (blocks_queued()) {
|
|
|
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
|
tail_fan_speed = block_buffer[block_index].fan_speed;
|
|
|
|
|
#ifdef BARICUDA
|
|
|
|
|
tail_valve_pressure = block_buffer[block_index].valve_pressure;
|
|
|
|
|
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
|
|
|
|
|
block = &block_buffer[block_index];
|
|
|
|
|
tail_valve_pressure = block->valve_pressure;
|
|
|
|
|
tail_e_to_p_pressure = block->e_to_p_pressure;
|
|
|
|
|
#endif
|
|
|
|
|
while(block_index != block_buffer_head)
|
|
|
|
|
{
|
|
|
|
|
while (block_index != block_buffer_head) {
|
|
|
|
|
block = &block_buffer[block_index];
|
|
|
|
|
if(block->steps_x != 0) x_active++;
|
|
|
|
|
if(block->steps_y != 0) y_active++;
|
|
|
|
|
if(block->steps_z != 0) z_active++;
|
|
|
|
|
if(block->steps_e != 0) e_active++;
|
|
|
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
|
for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
|
|
|
|
|
block_index = next_block_index(block_index);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
|
|
|
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
|
|
|
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
|
|
|
|
if((DISABLE_E) && (e_active == 0))
|
|
|
|
|
{
|
|
|
|
|
if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
|
|
|
|
|
if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
|
|
|
|
|
if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
|
|
|
|
|
if (DISABLE_E && !axis_active[E_AXIS]) {
|
|
|
|
|
disable_e0();
|
|
|
|
|
disable_e1();
|
|
|
|
|
disable_e2();
|
|
|
|
|
disable_e3();
|
|
|
|
|
}
|
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
|
|
|
|
|
|
|
|
#if defined(FAN_PIN) && FAN_PIN > -1 // HAS_FAN
|
|
|
|
|
#ifdef FAN_KICKSTART_TIME
|
|
|
|
|
static unsigned long fan_kick_end;
|
|
|
|
|
if (tail_fan_speed) {
|
|
|
|
@ -514,16 +448,16 @@ void check_axes_activity()
|
|
|
|
|
analogWrite(FAN_PIN, tail_fan_speed);
|
|
|
|
|
#endif //!FAN_SOFT_PWM
|
|
|
|
|
#endif //FAN_PIN > -1
|
|
|
|
|
|
|
|
|
|
#ifdef AUTOTEMP
|
|
|
|
|
getHighESpeed();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef BARICUDA
|
|
|
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
|
|
|
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 // HAS_HEATER_1
|
|
|
|
|
analogWrite(HEATER_1_PIN,tail_valve_pressure);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
|
|
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 // HAS_HEATER_2
|
|
|
|
|
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
@ -531,7 +465,7 @@ void check_axes_activity()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float junction_deviation = 0.1;
|
|
|
|
|
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
|
|
|
|
// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
|
|
|
|
|
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
|
|
|
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
|
|
|
|
@ -545,46 +479,44 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
|
|
|
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
|
|
|
// Rest here until there is room in the buffer.
|
|
|
|
|
while(block_buffer_tail == next_buffer_head)
|
|
|
|
|
{
|
|
|
|
|
while(block_buffer_tail == next_buffer_head) {
|
|
|
|
|
manage_heater();
|
|
|
|
|
manage_inactivity();
|
|
|
|
|
lcd_update();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if defined(MESH_BED_LEVELING)
|
|
|
|
|
if (mbl.active) {
|
|
|
|
|
z += mbl.get_z(x, y);
|
|
|
|
|
}
|
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
|
#ifdef MESH_BED_LEVELING
|
|
|
|
|
if (mbl.active) z += mbl.get_z(x, y);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// The target position of the tool in absolute steps
|
|
|
|
|
// Calculate target position in absolute steps
|
|
|
|
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
|
|
|
long target[4];
|
|
|
|
|
long target[NUM_AXIS];
|
|
|
|
|
target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
|
|
|
|
|
target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
|
|
|
|
|
target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
|
|
|
|
|
target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
float dx = target[X_AXIS] - position[X_AXIS],
|
|
|
|
|
dy = target[Y_AXIS] - position[Y_AXIS],
|
|
|
|
|
dz = target[Z_AXIS] - position[Z_AXIS],
|
|
|
|
|
de = target[E_AXIS] - position[E_AXIS];
|
|
|
|
|
|
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
|
if(target[E_AXIS]!=position[E_AXIS])
|
|
|
|
|
{
|
|
|
|
|
if(degHotend(active_extruder)<extrude_min_temp)
|
|
|
|
|
{
|
|
|
|
|
if (de) {
|
|
|
|
|
if (degHotend(active_extruder) < extrude_min_temp) {
|
|
|
|
|
position[E_AXIS] = target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
|
|
|
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
|
|
|
|
{
|
|
|
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
|
if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
|
|
|
|
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
|
|
|
}
|
|
|
|
@ -599,28 +531,26 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
block->busy = false;
|
|
|
|
|
|
|
|
|
|
// Number of steps for each axis
|
|
|
|
|
#ifndef COREXY
|
|
|
|
|
// default non-h-bot planning
|
|
|
|
|
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
|
|
|
|
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
// corexy planning
|
|
|
|
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
|
|
|
|
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
|
|
|
|
|
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
|
|
|
|
|
block->steps[A_AXIS] = labs(dx + dy);
|
|
|
|
|
block->steps[B_AXIS] = labs(dx - dy);
|
|
|
|
|
#else
|
|
|
|
|
// default non-h-bot planning
|
|
|
|
|
block->steps[X_AXIS] = labs(dx);
|
|
|
|
|
block->steps[Y_AXIS] = labs(dy);
|
|
|
|
|
#endif
|
|
|
|
|
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
|
|
|
|
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
|
|
|
|
block->steps_e *= volumetric_multiplier[active_extruder];
|
|
|
|
|
block->steps_e *= extrudemultiply;
|
|
|
|
|
block->steps_e /= 100;
|
|
|
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
|
|
|
|
|
|
|
|
|
block->steps[Z_AXIS] = labs(dz);
|
|
|
|
|
block->steps[E_AXIS] = labs(de);
|
|
|
|
|
block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
|
|
|
|
|
block->steps[E_AXIS] *= extrudemultiply;
|
|
|
|
|
block->steps[E_AXIS] /= 100;
|
|
|
|
|
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
|
|
|
|
|
|
|
|
|
|
// Bail if this is a zero-length block
|
|
|
|
|
if (block->step_event_count <= dropsegments)
|
|
|
|
|
{
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (block->step_event_count <= dropsegments) return;
|
|
|
|
|
|
|
|
|
|
block->fan_speed = fanSpeed;
|
|
|
|
|
#ifdef BARICUDA
|
|
|
|
@ -629,109 +559,94 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Compute direction bits for this block
|
|
|
|
|
block->direction_bits = 0;
|
|
|
|
|
#ifndef COREXY
|
|
|
|
|
if (target[X_AXIS] < position[X_AXIS])
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(X_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if (target[Y_AXIS] < position[Y_AXIS])
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(Y_AXIS);
|
|
|
|
|
}
|
|
|
|
|
uint8_t db = 0;
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
|
|
|
|
|
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
|
|
|
|
|
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
|
|
|
|
|
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
|
|
|
|
|
#else
|
|
|
|
|
if (target[X_AXIS] < position[X_AXIS])
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
|
|
|
|
}
|
|
|
|
|
if (target[Y_AXIS] < position[Y_AXIS])
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
|
|
|
|
}
|
|
|
|
|
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
|
|
|
|
}
|
|
|
|
|
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
|
|
|
|
}
|
|
|
|
|
if (dx < 0) db |= BIT(X_AXIS);
|
|
|
|
|
if (dy < 0) db |= BIT(Y_AXIS);
|
|
|
|
|
#endif
|
|
|
|
|
if (target[Z_AXIS] < position[Z_AXIS])
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(Z_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if (target[E_AXIS] < position[E_AXIS])
|
|
|
|
|
{
|
|
|
|
|
block->direction_bits |= BIT(E_AXIS);
|
|
|
|
|
}
|
|
|
|
|
if (dz < 0) db |= BIT(Z_AXIS);
|
|
|
|
|
if (de < 0) db |= BIT(E_AXIS);
|
|
|
|
|
block->direction_bits = db;
|
|
|
|
|
|
|
|
|
|
block->active_extruder = extruder;
|
|
|
|
|
|
|
|
|
|
//enable active axes
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
if((block->steps_x != 0) || (block->steps_y != 0))
|
|
|
|
|
{
|
|
|
|
|
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
|
|
|
|
|
enable_x();
|
|
|
|
|
enable_y();
|
|
|
|
|
}
|
|
|
|
|
#else
|
|
|
|
|
if(block->steps_x != 0) enable_x();
|
|
|
|
|
if(block->steps_y != 0) enable_y();
|
|
|
|
|
if (block->steps[X_AXIS]) enable_x();
|
|
|
|
|
if (block->steps[Y_AXIS]) enable_y();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef Z_LATE_ENABLE
|
|
|
|
|
if(block->steps_z != 0) enable_z();
|
|
|
|
|
if (block->steps[Z_AXIS]) enable_z();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Enable extruder(s)
|
|
|
|
|
if(block->steps_e != 0)
|
|
|
|
|
{
|
|
|
|
|
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
|
|
|
|
|
{
|
|
|
|
|
if (block->steps[E_AXIS]) {
|
|
|
|
|
if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
|
|
|
|
|
|
|
|
|
|
if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
|
|
|
|
|
if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
|
|
|
|
|
if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
|
|
|
|
|
if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--;
|
|
|
|
|
for (int i=0; i<EXTRUDERS; i++)
|
|
|
|
|
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
|
|
|
|
|
|
|
|
|
|
switch(extruder)
|
|
|
|
|
{
|
|
|
|
|
switch(extruder) {
|
|
|
|
|
case 0:
|
|
|
|
|
enable_e0();
|
|
|
|
|
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
|
|
|
|
|
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
break;
|
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
|
case 1:
|
|
|
|
|
enable_e1();
|
|
|
|
|
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
|
|
|
|
|
|
|
|
|
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
break;
|
|
|
|
|
#if EXTRUDERS > 2
|
|
|
|
|
case 2:
|
|
|
|
|
enable_e2();
|
|
|
|
|
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
|
|
|
|
|
|
|
|
|
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
|
|
|
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
|
|
|
|
#endif
|
|
|
|
|
break;
|
|
|
|
|
#if EXTRUDERS > 3
|
|
|
|
|
case 3:
|
|
|
|
|
enable_e3();
|
|
|
|
|
g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
|
|
|
|
|
|
|
|
|
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
|
|
|
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
|
|
|
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
|
|
|
|
break;
|
|
|
|
|
#endif // EXTRUDERS > 3
|
|
|
|
|
#endif // EXTRUDERS > 2
|
|
|
|
|
#endif // EXTRUDERS > 1
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else //enable all
|
|
|
|
|
{
|
|
|
|
|
else { // enable all
|
|
|
|
|
enable_e0();
|
|
|
|
|
enable_e1();
|
|
|
|
|
enable_e2();
|
|
|
|
@ -739,67 +654,65 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (block->steps_e == 0)
|
|
|
|
|
{
|
|
|
|
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (block->steps[E_AXIS]) {
|
|
|
|
|
if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate;
|
|
|
|
|
}
|
|
|
|
|
else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate;
|
|
|
|
|
|
|
|
|
|
/* This part of the code calculates the total length of the movement.
|
|
|
|
|
For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
|
|
|
|
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
|
|
|
|
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
|
|
|
|
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
|
|
|
|
Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
|
|
|
|
/**
|
|
|
|
|
* This part of the code calculates the total length of the movement.
|
|
|
|
|
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
|
|
|
|
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
|
|
|
|
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
|
|
|
|
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
|
|
|
|
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
|
|
|
|
*/
|
|
|
|
|
#ifndef COREXY
|
|
|
|
|
float delta_mm[4];
|
|
|
|
|
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
#else
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
float delta_mm[6];
|
|
|
|
|
delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
|
|
|
|
delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
|
|
|
|
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
|
|
|
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
|
|
|
|
#else
|
|
|
|
|
float delta_mm[4];
|
|
|
|
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
|
|
|
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
|
|
|
|
#endif
|
|
|
|
|
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
|
|
|
|
|
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
|
|
|
|
{
|
|
|
|
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
|
|
|
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0;
|
|
|
|
|
|
|
|
|
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
|
|
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
#ifndef COREXY
|
|
|
|
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
|
|
|
|
else {
|
|
|
|
|
block->millimeters = sqrt(
|
|
|
|
|
#ifdef COREXY
|
|
|
|
|
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
|
|
|
|
|
#else
|
|
|
|
|
block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
|
|
|
|
|
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
|
|
|
|
|
#endif
|
|
|
|
|
+ square(delta_mm[Z_AXIS])
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
|
|
|
|
|
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
|
|
|
|
float inverse_second = feed_rate * inverse_millimeters;
|
|
|
|
|
|
|
|
|
|
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
|
int moves_queued = movesplanned();
|
|
|
|
|
|
|
|
|
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
|
|
|
bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
|
|
|
|
|
#ifdef OLD_SLOWDOWN
|
|
|
|
|
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
|
|
|
|
|
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
|
|
|
|
if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifdef SLOWDOWN
|
|
|
|
|
// segment time im micro seconds
|
|
|
|
|
unsigned long segment_time = lround(1000000.0/inverse_second);
|
|
|
|
|
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
|
|
|
|
|
{
|
|
|
|
|
if (segment_time < minsegmenttime)
|
|
|
|
|
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
|
|
|
if (mq) {
|
|
|
|
|
if (segment_time < minsegmenttime) {
|
|
|
|
|
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
|
|
|
inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
|
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
|
|
|
segment_time = lround(1000000.0 / inverse_second);
|
|
|
|
@ -809,135 +722,116 @@ Having the real displacement of the head, we can calculate the total movement le
|
|
|
|
|
#endif
|
|
|
|
|
// END OF SLOW DOWN SECTION
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
|
|
|
|
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
|
|
|
|
|
|
|
|
|
#ifdef FILAMENT_SENSOR
|
|
|
|
|
//FMM update ring buffer used for delay with filament measurements
|
|
|
|
|
|
|
|
|
|
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
|
|
|
|
|
|
|
|
|
|
if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
|
|
|
|
|
{
|
|
|
|
|
delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
|
|
|
|
|
const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
|
|
|
|
|
|
|
|
|
|
while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
|
|
|
|
|
delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
|
|
|
|
|
while (delay_dist<0)
|
|
|
|
|
delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
|
|
|
|
|
delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
|
|
|
|
|
while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
|
|
|
|
|
while (delay_dist < 0) delay_dist += MMD10;
|
|
|
|
|
|
|
|
|
|
delay_index1 = delay_dist / 10.0; // calculate index
|
|
|
|
|
|
|
|
|
|
//ensure the number is within range of the array after converting from floating point
|
|
|
|
|
if(delay_index1<0)
|
|
|
|
|
delay_index1=0;
|
|
|
|
|
else if (delay_index1>MAX_MEASUREMENT_DELAY)
|
|
|
|
|
delay_index1=MAX_MEASUREMENT_DELAY;
|
|
|
|
|
|
|
|
|
|
if(delay_index1 != delay_index2) //moved index
|
|
|
|
|
{
|
|
|
|
|
meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
|
|
|
|
|
}
|
|
|
|
|
while( delay_index1 != delay_index2)
|
|
|
|
|
{
|
|
|
|
|
delay_index2 = delay_index2 + 1;
|
|
|
|
|
if(delay_index2>MAX_MEASUREMENT_DELAY)
|
|
|
|
|
delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
|
|
|
|
|
if(delay_index2<0)
|
|
|
|
|
delay_index2=0;
|
|
|
|
|
else if (delay_index2>MAX_MEASUREMENT_DELAY)
|
|
|
|
|
delay_index2=MAX_MEASUREMENT_DELAY;
|
|
|
|
|
|
|
|
|
|
delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
|
|
|
|
|
|
|
|
|
|
if (delay_index1 != delay_index2) { // moved index
|
|
|
|
|
meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
|
|
|
|
|
while (delay_index1 != delay_index2) {
|
|
|
|
|
// Increment and loop around buffer
|
|
|
|
|
if (++delay_index2 >= MMD) delay_index2 -= MMD;
|
|
|
|
|
delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
|
|
|
|
|
measurement_delay[delay_index2] = meas_sample;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
|
float current_speed[4];
|
|
|
|
|
float current_speed[NUM_AXIS];
|
|
|
|
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
|
|
|
|
for(int i=0; i < 4; i++)
|
|
|
|
|
{
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
|
|
|
current_speed[i] = delta_mm[i] * inverse_second;
|
|
|
|
|
if(fabs(current_speed[i]) > max_feedrate[i])
|
|
|
|
|
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
|
|
|
|
|
float cs = fabs(current_speed[i]), mf = max_feedrate[i];
|
|
|
|
|
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Max segement time in us.
|
|
|
|
|
#ifdef XY_FREQUENCY_LIMIT
|
|
|
|
|
#define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
|
|
|
|
|
|
|
|
|
|
// Check and limit the xy direction change frequency
|
|
|
|
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
|
|
|
|
old_direction_bits = block->direction_bits;
|
|
|
|
|
segment_time = lround((float)segment_time / speed_factor);
|
|
|
|
|
|
|
|
|
|
if((direction_change & BIT(X_AXIS)) == 0)
|
|
|
|
|
{
|
|
|
|
|
x_segment_time[0] += segment_time;
|
|
|
|
|
long xs0 = axis_segment_time[X_AXIS][0],
|
|
|
|
|
xs1 = axis_segment_time[X_AXIS][1],
|
|
|
|
|
xs2 = axis_segment_time[X_AXIS][2],
|
|
|
|
|
ys0 = axis_segment_time[Y_AXIS][0],
|
|
|
|
|
ys1 = axis_segment_time[Y_AXIS][1],
|
|
|
|
|
ys2 = axis_segment_time[Y_AXIS][2];
|
|
|
|
|
|
|
|
|
|
if ((direction_change & BIT(X_AXIS)) != 0) {
|
|
|
|
|
xs2 = axis_segment_time[X_AXIS][2] = xs1;
|
|
|
|
|
xs1 = axis_segment_time[X_AXIS][1] = xs0;
|
|
|
|
|
xs0 = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
x_segment_time[2] = x_segment_time[1];
|
|
|
|
|
x_segment_time[1] = x_segment_time[0];
|
|
|
|
|
x_segment_time[0] = segment_time;
|
|
|
|
|
xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
|
|
|
|
|
|
|
|
|
|
if ((direction_change & BIT(Y_AXIS)) != 0) {
|
|
|
|
|
ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
|
|
|
|
|
ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
|
|
|
|
|
ys0 = 0;
|
|
|
|
|
}
|
|
|
|
|
if((direction_change & BIT(Y_AXIS)) == 0)
|
|
|
|
|
{
|
|
|
|
|
y_segment_time[0] += segment_time;
|
|
|
|
|
ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
|
|
|
|
|
|
|
|
|
|
long max_x_segment_time = max(xs0, max(xs1, xs2)),
|
|
|
|
|
max_y_segment_time = max(ys0, max(ys1, ys2)),
|
|
|
|
|
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
|
|
|
|
|
if (min_xy_segment_time < MAX_FREQ_TIME) {
|
|
|
|
|
float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
|
|
|
|
|
speed_factor = min(speed_factor, low_sf);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
y_segment_time[2] = y_segment_time[1];
|
|
|
|
|
y_segment_time[1] = y_segment_time[0];
|
|
|
|
|
y_segment_time[0] = segment_time;
|
|
|
|
|
}
|
|
|
|
|
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
|
|
|
|
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
|
|
|
|
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
|
|
|
|
if(min_xy_segment_time < MAX_FREQ_TIME)
|
|
|
|
|
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
|
|
|
|
#endif // XY_FREQUENCY_LIMIT
|
|
|
|
|
|
|
|
|
|
// Correct the speed
|
|
|
|
|
if( speed_factor < 1.0)
|
|
|
|
|
{
|
|
|
|
|
for(unsigned char i=0; i < 4; i++)
|
|
|
|
|
{
|
|
|
|
|
current_speed[i] *= speed_factor;
|
|
|
|
|
}
|
|
|
|
|
if (speed_factor < 1.0) {
|
|
|
|
|
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
|
|
|
|
|
block->nominal_speed *= speed_factor;
|
|
|
|
|
block->nominal_rate *= speed_factor;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
|
float steps_per_mm = block->step_event_count / block->millimeters;
|
|
|
|
|
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
|
|
|
|
|
{
|
|
|
|
|
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
|
|
|
|
|
if (bsx == 0 && bsy == 0 && bsz == 0) {
|
|
|
|
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
|
}
|
|
|
|
|
else if(block->steps_e == 0)
|
|
|
|
|
{
|
|
|
|
|
else if (bse == 0) {
|
|
|
|
|
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
else {
|
|
|
|
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
|
}
|
|
|
|
|
// Limit acceleration per axis
|
|
|
|
|
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
|
|
|
|
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
|
|
|
|
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
|
|
|
|
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
|
|
|
|
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
|
|
|
|
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
|
|
|
|
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
|
|
|
|
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
block->acceleration = block->acceleration_st / steps_per_mm;
|
|
|
|
|
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
|
|
|
|
|
unsigned long acc_st = block->acceleration_st,
|
|
|
|
|
xsteps = axis_steps_per_sqr_second[X_AXIS],
|
|
|
|
|
ysteps = axis_steps_per_sqr_second[Y_AXIS],
|
|
|
|
|
zsteps = axis_steps_per_sqr_second[Z_AXIS],
|
|
|
|
|
esteps = axis_steps_per_sqr_second[E_AXIS];
|
|
|
|
|
if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
|
|
|
|
|
if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
|
|
|
|
|
if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
|
|
|
|
|
if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
|
|
|
|
|
|
|
|
|
|
block->acceleration_st = acc_st;
|
|
|
|
|
block->acceleration = acc_st / steps_per_mm;
|
|
|
|
|
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
|
|
|
|
|
|
|
|
|
|
#if 0 // Use old jerk for now
|
|
|
|
|
// Compute path unit vector
|
|
|
|
@ -979,30 +873,31 @@ Having the real displacement of the head, we can calculate the total movement le
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Start with a safe speed
|
|
|
|
|
float vmax_junction = max_xy_jerk / 2;
|
|
|
|
|
float vmax_junction_factor = 1.0;
|
|
|
|
|
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
|
|
|
|
|
vmax_junction = min(vmax_junction, max_z_jerk/2);
|
|
|
|
|
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
|
|
|
|
|
vmax_junction = min(vmax_junction, max_e_jerk/2);
|
|
|
|
|
float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
|
|
|
|
|
float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
|
|
|
|
|
if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
|
|
|
|
|
if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
|
|
|
|
|
vmax_junction = min(vmax_junction, block->nominal_speed);
|
|
|
|
|
float safe_speed = vmax_junction;
|
|
|
|
|
|
|
|
|
|
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
|
|
|
|
|
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
|
|
|
|
|
float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
|
|
|
|
|
dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
|
|
|
|
|
dz = fabs(csz - previous_speed[Z_AXIS]),
|
|
|
|
|
de = fabs(cse - previous_speed[E_AXIS]),
|
|
|
|
|
jerk = sqrt(dx * dx + dy * dy);
|
|
|
|
|
|
|
|
|
|
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
|
|
|
|
vmax_junction = block->nominal_speed;
|
|
|
|
|
// }
|
|
|
|
|
if (jerk > max_xy_jerk) {
|
|
|
|
|
vmax_junction_factor = (max_xy_jerk/jerk);
|
|
|
|
|
}
|
|
|
|
|
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
|
|
|
|
|
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
|
|
|
|
|
}
|
|
|
|
|
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
|
|
|
|
|
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
|
|
|
|
|
}
|
|
|
|
|
if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
|
|
|
|
|
if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
|
|
|
|
|
if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
|
|
|
|
|
|
|
|
|
|
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
|
|
|
|
|
}
|
|
|
|
|
block->max_entry_speed = vmax_junction;
|
|
|
|
@ -1019,36 +914,24 @@ Having the real displacement of the head, we can calculate the total movement le
|
|
|
|
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
|
|
|
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
|
|
|
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
|
|
|
|
if (block->nominal_speed <= v_allowable) {
|
|
|
|
|
block->nominal_length_flag = true;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
block->nominal_length_flag = false;
|
|
|
|
|
}
|
|
|
|
|
block->nominal_length_flag = (block->nominal_speed <= v_allowable);
|
|
|
|
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
|
|
|
|
|
|
|
|
|
// Update previous path unit_vector and nominal speed
|
|
|
|
|
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
|
|
|
|
|
previous_nominal_speed = block->nominal_speed;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef ADVANCE
|
|
|
|
|
// Calculate advance rate
|
|
|
|
|
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
|
|
|
|
if (!bse || (!bsx && !bsy && !bsz)) {
|
|
|
|
|
block->advance_rate = 0;
|
|
|
|
|
block->advance = 0;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
|
|
|
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
|
|
|
|
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
|
|
|
|
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
|
|
|
|
|
block->advance = advance;
|
|
|
|
|
if(acc_dist == 0) {
|
|
|
|
|
block->advance_rate = 0;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
block->advance_rate = advance / (float)acc_dist;
|
|
|
|
|
}
|
|
|
|
|
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
|
|
|
|
|
}
|
|
|
|
|
/*
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
@ -1059,21 +942,21 @@ Having the real displacement of the head, we can calculate the total movement le
|
|
|
|
|
*/
|
|
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
|
|
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
|
|
|
|
|
safe_speed/block->nominal_speed);
|
|
|
|
|
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
|
|
|
|
|
|
|
|
|
|
// Move buffer head
|
|
|
|
|
block_buffer_head = next_buffer_head;
|
|
|
|
|
|
|
|
|
|
// Update position
|
|
|
|
|
memcpy(position, target, sizeof(target)); // position[] = target[]
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
|
|
|
|
|
|
|
|
|
|
planner_recalculate();
|
|
|
|
|
|
|
|
|
|
st_wake_up();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && not defined(DELTA)
|
|
|
|
|
} // plan_buffer_line()
|
|
|
|
|
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) && !defined(DELTA)
|
|
|
|
|
vector_3 plan_get_position() {
|
|
|
|
|
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
|
|
|
|
|
|
|
|
|
@ -1086,7 +969,7 @@ vector_3 plan_get_position() {
|
|
|
|
|
|
|
|
|
|
return position;
|
|
|
|
|
}
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING && !DELTA
|
|
|
|
|
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
|
|
|
|
|
void plan_set_position(float x, float y, float z, const float &e)
|
|
|
|
@ -1094,49 +977,33 @@ void plan_set_position(float x, float y, float z, const float &e)
|
|
|
|
|
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
|
|
|
|
|
{
|
|
|
|
|
#if defined(ENABLE_AUTO_BED_LEVELING)
|
|
|
|
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
|
|
|
|
#elif defined(MESH_BED_LEVELING)
|
|
|
|
|
if (mbl.active) {
|
|
|
|
|
z += mbl.get_z(x, y);
|
|
|
|
|
}
|
|
|
|
|
#endif // ENABLE_AUTO_BED_LEVELING
|
|
|
|
|
if (mbl.active) z += mbl.get_z(x, y);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
|
|
|
|
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
|
|
|
|
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
|
|
|
|
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
|
|
|
|
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
|
|
|
|
float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
|
|
|
|
|
float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
|
|
|
|
|
float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
|
|
|
|
|
float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
|
|
|
|
st_set_position(nx, ny, nz, ne);
|
|
|
|
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
|
|
|
|
previous_speed[0] = 0.0;
|
|
|
|
|
previous_speed[1] = 0.0;
|
|
|
|
|
previous_speed[2] = 0.0;
|
|
|
|
|
previous_speed[3] = 0.0;
|
|
|
|
|
|
|
|
|
|
for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void plan_set_e_position(const float &e)
|
|
|
|
|
{
|
|
|
|
|
void plan_set_e_position(const float &e) {
|
|
|
|
|
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
|
|
|
|
st_set_e_position(position[E_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint8_t movesplanned()
|
|
|
|
|
{
|
|
|
|
|
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
|
void set_extrude_min_temp(float temp)
|
|
|
|
|
{
|
|
|
|
|
extrude_min_temp=temp;
|
|
|
|
|
}
|
|
|
|
|
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
|
|
|
|
|
void reset_acceleration_rates()
|
|
|
|
|
{
|
|
|
|
|
for(int8_t i=0; i < NUM_AXIS; i++)
|
|
|
|
|
{
|
|
|
|
|
void reset_acceleration_rates() {
|
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++)
|
|
|
|
|
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|