restore Branch from Backup

sorry for that
master
cocktailyogi 11 years ago
parent 1875ab3bd7
commit 512f2a3136

@ -12,6 +12,13 @@
// example_configurations/delta directory. // example_configurations/delta directory.
// //
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// User-specified version info of this build to display in [Pronterface, etc] terminal window during // User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this // startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware. // build by the user have been successfully uploaded into firmware.
@ -132,7 +139,6 @@
// 1010 is Pt1000 with 1k pullup (non standard) // 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup // 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard) // 110 is Pt100 with 1k pullup (non standard)
// 70 is 500C thermistor for Pico hot end
#define TEMP_SENSOR_0 -1 #define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1 #define TEMP_SENSOR_1 -1

@ -37,10 +37,15 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size)
// the default values are used whenever there is a change to the data, to prevent // the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables. // wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#ifdef DELTA
#define EEPROM_VERSION "V11"
#else
#define EEPROM_VERSION "V10" #define EEPROM_VERSION "V10"
#ifdef DELTA
#undef EEPROM_VERSION
#define EEPROM_VERSION "V11"
#endif
#ifdef SCARA
#undef EEPROM_VERSION
#define EEPROM_VERSION "V12"
#endif #endif
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
@ -93,6 +98,9 @@ void Config_StoreSettings()
int lcd_contrast = 32; int lcd_contrast = 32;
#endif #endif
EEPROM_WRITE_VAR(i,lcd_contrast); EEPROM_WRITE_VAR(i,lcd_contrast);
#ifdef SCARA
EEPROM_WRITE_VAR(i,axis_scaling); // Add scaling for SCARA
#endif
char ver2[4]=EEPROM_VERSION; char ver2[4]=EEPROM_VERSION;
i=EEPROM_OFFSET; i=EEPROM_OFFSET;
EEPROM_WRITE_VAR(i,ver2); // validate data EEPROM_WRITE_VAR(i,ver2); // validate data
@ -115,6 +123,16 @@ void Config_PrintSettings()
SERIAL_ECHOLN(""); SERIAL_ECHOLN("");
SERIAL_ECHO_START; SERIAL_ECHO_START;
#ifdef SCARA
SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M365 X",axis_scaling[0]);
SERIAL_ECHOPAIR(" Y",axis_scaling[1]);
SERIAL_ECHOPAIR(" Z",axis_scaling[2]);
SERIAL_ECHOLN("");
SERIAL_ECHO_START;
#endif
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):"); SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M203 X",max_feedrate[0]); SERIAL_ECHOPAIR(" M203 X",max_feedrate[0]);
@ -240,6 +258,9 @@ void Config_RetrieveSettings()
int lcd_contrast; int lcd_contrast;
#endif #endif
EEPROM_READ_VAR(i,lcd_contrast); EEPROM_READ_VAR(i,lcd_contrast);
#ifdef SCARA
EEPROM_READ_VAR(i,axis_scaling);
#endif
// Call updatePID (similar to when we have processed M301) // Call updatePID (similar to when we have processed M301)
updatePID(); updatePID();
@ -266,6 +287,9 @@ void Config_ResetDefault()
axis_steps_per_unit[i]=tmp1[i]; axis_steps_per_unit[i]=tmp1[i];
max_feedrate[i]=tmp2[i]; max_feedrate[i]=tmp2[i];
max_acceleration_units_per_sq_second[i]=tmp3[i]; max_acceleration_units_per_sq_second[i]=tmp3[i];
#ifdef SCARA
axis_scaling[i]=1;
#endif
} }
// steps per sq second need to be updated to agree with the units per sq second // steps per sq second need to be updated to agree with the units per sq second

@ -178,6 +178,10 @@ void get_coordinates();
void calculate_delta(float cartesian[3]); void calculate_delta(float cartesian[3]);
extern float delta[3]; extern float delta[3];
#endif #endif
#ifdef SCARA
void calculate_delta(float cartesian[3]);
void calculate_SCARA_forward_Transform(float f_scara[3]);
#endif
void prepare_move(); void prepare_move();
void kill(); void kill();
void Stop(); void Stop();
@ -215,6 +219,9 @@ extern float delta_diagonal_rod;
extern float delta_segments_per_second; extern float delta_segments_per_second;
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#endif #endif
#ifdef SCARA
extern float axis_scaling[3]; // Build size scaling
#endif
extern float min_pos[3]; extern float min_pos[3];
extern float max_pos[3]; extern float max_pos[3];
extern bool axis_known_position[3]; extern bool axis_known_position[3];

@ -170,6 +170,16 @@
// M908 - Control digital trimpot directly. // M908 - Control digital trimpot directly.
// M350 - Set microstepping mode. // M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly. // M351 - Toggle MS1 MS2 pins directly.
// ************ SCARA Specific - This can change to suit future G-code regulations
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
//************* SCARA End ***************
// M928 - Start SD logging (M928 filename.g) - ended by M29 // M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error // M999 - Restart after being stopped by error
@ -212,6 +222,7 @@ float add_homeing[3]={0,0,0};
#ifdef DELTA #ifdef DELTA
float endstop_adj[3]={0,0,0}; float endstop_adj[3]={0,0,0};
#endif #endif
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false}; bool axis_known_position[3] = {false, false, false};
@ -276,11 +287,16 @@ int EtoPPressure=0;
float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND; float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
#endif #endif
#ifdef SCARA // Build size scaling
float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
#endif
//=========================================================================== //===========================================================================
//=============================Private Variables============================= //=============================Private Variables=============================
//=========================================================================== //===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
static float offset[3] = {0.0, 0.0, 0.0}; static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true; static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate; static float feedrate = 1500.0, next_feedrate, saved_feedrate;
@ -850,9 +866,59 @@ static void axis_is_at_home(int axis) {
} }
} }
#endif #endif
#ifdef SCARA
float homeposition[3];
char i;
if (axis < 2)
{
for (i=0; i<3; i++)
{
homeposition[i] = base_home_pos(i);
}
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
// Works out real Homeposition angles using inverse kinematics,
// and calculates homing offset using forward kinematics
calculate_delta(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (i=0; i<2; i++)
{
delta[i] -= add_homeing[i];
}
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = delta[axis];
// SCARA home positions are based on configuration since the actual limits are determined by the
// inverse kinematic transform.
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
else
{
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
}
#else
current_position[axis] = base_home_pos(axis) + add_homeing[axis]; current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis]; min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis]; max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
#endif
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
@ -1111,6 +1177,7 @@ static void homeaxis(int axis) {
} }
} }
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
void refresh_cmd_timeout(void) void refresh_cmd_timeout(void)
{ {
previous_millis_cmd = millis(); previous_millis_cmd = millis();
@ -1184,6 +1251,7 @@ void process_commands()
return; return;
} }
break; break;
#ifdef SCARA //disable arc support
case 2: // G2 - CW ARC case 2: // G2 - CW ARC
if(Stopped == false) { if(Stopped == false) {
get_arc_coordinates(); get_arc_coordinates();
@ -1198,6 +1266,7 @@ void process_commands()
return; return;
} }
break; break;
#endif
case 4: // G4 dwell case 4: // G4 dwell
LCD_MESSAGEPGM(MSG_DWELL); LCD_MESSAGEPGM(MSG_DWELL);
codenum = 0; codenum = 0;
@ -1316,7 +1385,9 @@ void process_commands()
current_position[X_AXIS] = destination[X_AXIS]; current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS];
#ifndef SCARA
current_position[Z_AXIS] = destination[Z_AXIS]; current_position[Z_AXIS] = destination[Z_AXIS];
#endif
} }
#endif #endif
@ -1346,13 +1417,21 @@ void process_commands()
if(code_seen(axis_codes[X_AXIS])) if(code_seen(axis_codes[X_AXIS]))
{ {
if(code_value_long() != 0) { if(code_value_long() != 0) {
#ifdef SCARA
current_position[X_AXIS]=code_value();
#else
current_position[X_AXIS]=code_value()+add_homeing[0]; current_position[X_AXIS]=code_value()+add_homeing[0];
#endif
} }
} }
if(code_seen(axis_codes[Y_AXIS])) { if(code_seen(axis_codes[Y_AXIS])) {
if(code_value_long() != 0) { if(code_value_long() != 0) {
#ifdef SCARA
current_position[Y_AXIS]=code_value();
#else
current_position[Y_AXIS]=code_value()+add_homeing[1]; current_position[Y_AXIS]=code_value()+add_homeing[1];
#endif
} }
} }
@ -1427,6 +1506,11 @@ void process_commands()
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA #endif // else DELTA
#ifdef SCARA
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#endif SCARA
#ifdef ENDSTOPS_ONLY_FOR_HOMING #ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false); enable_endstops(false);
#endif #endif
@ -1623,7 +1707,16 @@ void process_commands()
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
} }
else { else {
#ifdef SCARA
if (i == X_AXIS || i == Y_AXIS) {
current_position[i] = code_value();
}
else {
current_position[i] = code_value()+add_homeing[i]; current_position[i] = code_value()+add_homeing[i];
}
#else
current_position[i] = code_value()+add_homeing[i];
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
} }
@ -2214,6 +2307,26 @@ void process_commands()
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]); SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
#ifdef SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLLN("");
#endif
break; break;
case 120: // M120 case 120: // M120
enable_endstops(false) ; enable_endstops(false) ;
@ -2335,6 +2448,16 @@ void process_commands()
{ {
if(code_seen(axis_codes[i])) add_homeing[i] = code_value(); if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
} }
#ifdef SCARA
if(code_seen('T')) // Theta
{
add_homeing[0] = code_value() ;
}
if(code_seen('P')) // Psi
{
add_homeing[1] = code_value() ;
}
#endif
break; break;
#ifdef DELTA #ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec> case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
@ -2693,6 +2816,105 @@ void process_commands()
PID_autotune(temp, e, c); PID_autotune(temp, e, c);
} }
break; break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
SERIAL_ECHOLN(" Cal: Theta 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 0;
delta[1] = 120;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 361: // SCARA Theta pos2
SERIAL_ECHOLN(" Cal: Theta 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 90;
delta[1] = 130;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 362: // SCARA Psi pos1
SERIAL_ECHOLN(" Cal: Psi 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 60;
delta[1] = 180;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 363: // SCARA Psi pos2
SERIAL_ECHOLN(" Cal: Psi 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 50;
delta[1] = 90;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 364: // SCARA Psi pos3 (90 deg to Theta)
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 45;
delta[1] = 135;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 365: // M364 Set SCARA scaling for X Y Z
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i]))
{
axis_scaling[i] = code_value();
}
}
break;
#endif
case 400: // M400 finish all moves case 400: // M400 finish all moves
{ {
st_synchronize(); st_synchronize();
@ -3255,8 +3477,46 @@ void calculate_delta(float cartesian[3])
void prepare_move() void prepare_move()
{ {
clamp_to_software_endstops(destination); clamp_to_software_endstops(destination);
previous_millis_cmd = millis(); previous_millis_cmd = millis();
#ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination);
//SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
//SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
//SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // SCARA
#ifdef DELTA #ifdef DELTA
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) { for (int8_t i=0; i < NUM_AXIS; i++) {
@ -3282,7 +3542,8 @@ void prepare_move()
destination[E_AXIS], feedrate*feedmultiply/60/100.0, destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder); active_extruder);
} }
#else
#endif // DELTA
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (active_extruder_parked) if (active_extruder_parked)
@ -3325,6 +3586,7 @@ void prepare_move()
} }
#endif //DUAL_X_CARRIAGE #endif //DUAL_X_CARRIAGE
#if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves // Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) { if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@ -3332,7 +3594,8 @@ void prepare_move()
else { else {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
} }
#endif //else DELTA #endif // !(DELTA || SCARA)
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i]; current_position[i] = destination[i];
} }
@ -3400,6 +3663,89 @@ void controllerFan()
} }
#endif #endif
#ifdef SCARA
void calculate_SCARA_forward_Transform(float f_scara[3])
{
// Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1/1000;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1/1000;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2/1000;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2/1000;
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void calculate_delta(float cartesian[3]){
//reverse kinematics.
// Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos[2];
static float L1_2, L2_2, SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
L1_2 = pow(Linkage_1/1000,2);
L2_2 = pow(Linkage_2/1000,2);
#if (Linkage_1 == Linkage_2)
SCARA_C2 = ( ( pow(SCARA_pos[X_AXIS],2) + pow(SCARA_pos[Y_AXIS],2) ) / (2 * L1_2) ) - 1;
#else
SCARA_C2 = ( pow(SCARA_pos[X_AXIS],2) + pow(SCARA_pos[Y_AXIS],2) - L1_2 - L2_2 ) / 45000;
#endif
SCARA_S2 = sqrt( 1 - pow(SCARA_C2,2) );
SCARA_K1 = Linkage_1/1000+Linkage_2/1000*SCARA_C2;
SCARA_K2 = Linkage_2/1000*SCARA_S2;
SCARA_theta = (atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2))*-1;
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
SERIAL_ECHOLN(" ");
*/
}
#endif
#ifdef TEMP_STAT_LEDS #ifdef TEMP_STAT_LEDS
static bool blue_led = false; static bool blue_led = false;
static bool red_led = false; static bool red_led = false;

@ -0,0 +1,743 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
// This configuration file contains the basic settings.
// Advanced settings can be found in Configuration_adv.h
// BASIC SETTINGS: select your board type, temperature sensor type, axis scaling, and endstop configuration
//===========================================================================
//========================= SCARA Settings ==================================
//===========================================================================
// SCARA-mode for Marlin has been developed by QHARLEY in ZA in 2012/2013. Implemented
// and slightly reworked by JCERNY in 06/2014 with the goal to bring it into Master-Branch
// QHARLEYS Autobedlevelling has not been ported, because Marlin has now Bed-levelling
// You might need Z-Min endstop on SCARA-Printer to use this feature. Actually untested!
// Uncomment to use Morgan scara mode
#define SCARA
#define scara_segments_per_second 200
// Length of inner support arm
#define Linkage_1 150000 //um Preprocessor cannot handle decimal point...
// Length of outer support arm Measure arm lengths precisely, and enter
#define Linkage_2 150000 //um define in micrometer
// SCARA tower offset (position of Tower relative to bed zero position)
// This needs to be reasonably accurate as it defines the printbed position in the SCARA space.
#define SCARA_offset_x 100 //mm
#define SCARA_offset_y -56 //mm
#define SCARA_RAD2DEG 57.2957795 // to convert RAD to degrees
//===========================================================================
//========================= SCARA Settings end ==================================
//===========================================================================
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_VERSION_CONFIG_H __DATE__ " " __TIME__ // build date and time
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
// SERIAL_PORT selects which serial port should be used for communication with the host.
// This allows the connection of wireless adapters (for instance) to non-default port pins.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting.
#define SERIAL_PORT 0
// This determines the communication speed of the printer
// This determines the communication speed of the printer
#define BAUDRATE 250000
// This enables the serial port associated to the Bluetooth interface
//#define BTENABLED // Enable BT interface on AT90USB devices
//// The following define selects which electronics board you have. Please choose the one that matches your setup
// 10 = Gen7 custom (Alfons3 Version) "https://github.com/Alfons3/Generation_7_Electronics"
// 11 = Gen7 v1.1, v1.2 = 11
// 12 = Gen7 v1.3
// 13 = Gen7 v1.4
// 131 = OpenHardware.co.za custom Gen7 electronics
// 2 = Cheaptronic v1.0
// 20 = Sethi 3D_1
// 3 = MEGA/RAMPS up to 1.2 = 3
// 33 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
// 34 = RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
// 35 = RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
// 4 = Duemilanove w/ ATMega328P pin assignment
// 5 = Gen6
// 51 = Gen6 deluxe
// 6 = Sanguinololu < 1.2
// 62 = Sanguinololu 1.2 and above
// 63 = Melzi
// 64 = STB V1.1
// 65 = Azteeg X1
// 66 = Melzi with ATmega1284 (MaKr3d version)
// 67 = Azteeg X3
// 68 = Azteeg X3 Pro
// 7 = Ultimaker
// 71 = Ultimaker (Older electronics. Pre 1.5.4. This is rare)
// 72 = Ultimainboard 2.x (Uses TEMP_SENSOR 20)
// 77 = 3Drag Controller
// 8 = Teensylu
// 80 = Rumba
// 81 = Printrboard (AT90USB1286)
// 82 = Brainwave (AT90USB646)
// 83 = SAV Mk-I (AT90USB1286)
// 84 = Teensy++2.0 (AT90USB1286) // CLI compile: DEFINES=AT90USBxx_TEENSYPP_ASSIGNMENTS HARDWARE_MOTHERBOARD=84 make
// 9 = Gen3+
// 70 = Megatronics
// 701= Megatronics v2.0
// 702= Minitronics v1.0
// 90 = Alpha OMCA board
// 91 = Final OMCA board
// 301= Rambo
// 21 = Elefu Ra Board (v3)
// 88 = 5DPrint D8 Driver Board
#ifndef MOTHERBOARD
#define MOTHERBOARD 33
#endif
// Define this to set a custom name for your generic Mendel,
// #define CUSTOM_MENDEL_NAME "This Mendel"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
// #define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
#define EXTRUDERS 1
//// The following define selects which power supply you have. Please choose the one that matches your setup
// 1 = ATX
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
#define POWER_SUPPLY 1
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it.
// #define PS_DEFAULT_OFF
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
//
//--NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
//
//// Temperature sensor settings:
// -2 is thermocouple with MAX6675 (only for sensor 0)
// -1 is thermocouple with AD595
// 0 is not used
// 1 is 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
// 2 is 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
// 3 is Mendel-parts thermistor (4.7k pullup)
// 4 is 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
// 5 is 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
// 6 is 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
// 7 is 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
// 71 is 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
// 8 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
// 9 is 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
// 10 is 100k RS thermistor 198-961 (4.7k pullup)
// 11 is 100k beta 3950 1% thermistor (4.7k pullup)
// 12 is 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
// 20 is the PT100 circuit found in the Ultimainboard V2.x
// 60 is 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
//
// 1k ohm pullup tables - This is not normal, you would have to have changed out your 4.7k for 1k
// (but gives greater accuracy and more stable PID)
// 51 is 100k thermistor - EPCOS (1k pullup)
// 52 is 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
// 55 is 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
//
// 1047 is Pt1000 with 4k7 pullup
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_BED 1
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
// average current. The value should be an integer and the heat bed will be turned on for 1 interval of
// HEATER_BED_DUTY_CYCLE_DIVIDER intervals.
//#define HEATER_BED_DUTY_CYCLE_DIVIDER 4
// If you want the M105 heater power reported in watts, define the BED_WATTS, and (shared for all extruders) EXTRUDER_WATTS
//#define EXTRUDER_WATTS (12.0*12.0/6.7) // P=I^2/R
//#define BED_WATTS (12.0*12.0/1.1) // P=I^2/R
// PID settings:
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 8.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// MakerGear
// #define DEFAULT_Kp 7.0
// #define DEFAULT_Ki 0.1
// #define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
// #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki 2.25
// #define DEFAULT_Kd 440
#endif // PIDTEMP
// Bed Temperature Control
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#ifdef PIDTEMPBED
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
// #define DEFAULT_bedKp 97.1
// #define DEFAULT_bedKi 1.41
// #define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE
//if PREVENT_DANGEROUS_EXTRUDE is on, you can still disable (uncomment) very long bits of extrusion separately.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MINTEMP 170
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
// Uncomment the following line to enable CoreXY kinematics
// #define COREXY
// coarse Endstop Settings
//#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#ifndef ENDSTOPPULLUPS
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
// #define ENDSTOPPULLUP_XMAX
// #define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX // open pin, inverted
#define ENDSTOPPULLUP_XMIN // open pin, inverted
#define ENDSTOPPULLUP_YMIN // open pin, inverted
// #define ENDSTOPPULLUP_ZMIN
#endif
#ifdef ENDSTOPPULLUPS
#define ENDSTOPPULLUP_XMAX
#define ENDSTOPPULLUP_YMAX
#define ENDSTOPPULLUP_ZMAX
#define ENDSTOPPULLUP_XMIN
#define ENDSTOPPULLUP_YMIN
#define ENDSTOPPULLUP_ZMIN
#endif
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstop s when homing; 1=MAX, -1=MIN
#define X_HOME_DIR 1
#define Y_HOME_DIR 1
#define Z_HOME_DIR -1
#define min_software_endstops true // If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true // If true, axis won't move to coordinates greater than the defined lengths below.
// Travel limits after homing
#define X_MAX_POS 200
#define X_MIN_POS 0
#define Y_MAX_POS 200
#define Y_MIN_POS 0
#define Z_MAX_POS 225
#define Z_MIN_POS MANUAL_Z_HOME_POS
#define X_MAX_LENGTH (X_MAX_POS - X_MIN_POS)
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
//============================= Bed Auto Leveling ===========================
//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line)
#ifdef ENABLE_AUTO_BED_LEVELING
// There are 2 different ways to pick the X and Y locations to probe:
// - "grid" mode
// Probe every point in a rectangular grid
// You must specify the rectangle, and the density of sample points
// This mode is preferred because there are more measurements.
// It used to be called ACCURATE_BED_LEVELING but "grid" is more descriptive
// - "3-point" mode
// Probe 3 arbitrary points on the bed (that aren't colinear)
// You must specify the X & Y coordinates of all 3 points
#define AUTO_BED_LEVELING_GRID
// with AUTO_BED_LEVELING_GRID, the bed is sampled in a
// AUTO_BED_LEVELING_GRID_POINTSxAUTO_BED_LEVELING_GRID_POINTS grid
// and least squares solution is calculated
// Note: this feature occupies 10'206 byte
#ifdef AUTO_BED_LEVELING_GRID
// set the rectangle in which to probe
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define BACK_PROBE_BED_POSITION 180
#define FRONT_PROBE_BED_POSITION 20
// set the number of grid points per dimension
// I wouldn't see a reason to go above 3 (=9 probing points on the bed)
#define AUTO_BED_LEVELING_GRID_POINTS 2
#else // not AUTO_BED_LEVELING_GRID
// with no grid, just probe 3 arbitrary points. A simple cross-product
// is used to esimate the plane of the print bed
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif // AUTO_BED_LEVELING_GRID
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
//#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
#define XY_TRAVEL_SPEED 8000 // X and Y axis travel speed between probes, in mm/min
#define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point.
#define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points
//If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk
//The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it.
// You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile.
// #define PROBE_SERVO_DEACTIVATION_DELAY 300
//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing,
//it is highly recommended you let this Z_SAFE_HOMING enabled!!!
// #define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area.
// When defined, it will:
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled
// - If stepper drivers timeout, it will need X and Y homing again before Z homing
// - Position the probe in a defined XY point before Z Homing when homing all axis (G28)
// - Block Z homing only when the probe is outside bed area.
#ifdef Z_SAFE_HOMING
#define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28)
#define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28)
#endif
#endif // ENABLE_AUTO_BED_LEVELING
// The position of the homing switches
#define MANUAL_HOME_POSITIONS // If defined, MANUAL_*_HOME_POS below will be used
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
//Manual homing switch locations:
// For deltabots this means top and center of the Cartesian print volume.
// For SCARA: Offset between HomingPosition and Bed X=0 / Y=0
#define MANUAL_X_HOME_POS -20
#define MANUAL_Y_HOME_POS -48
#define MANUAL_Z_HOME_POS 0.1 // Distance between nozzle and print surface after homing.
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
#define HOMING_FEEDRATE {40*60, 40*60, 10*60, 0} // set the homing speeds (mm/min)
// default settings
//#define DEFAULT_AXIS_STEPS_PER_UNIT {85.6,85.6,200/1.25,970} // default steps per unit for Ultimaker
#define DEFAULT_AXIS_STEPS_PER_UNIT {109,109,200/1.25,970} // default steps per unit for Ultimaker
#define DEFAULT_MAX_FEEDRATE {200, 200, 30, 45} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {300,300,30,1500} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 300 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for retracts
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
// #define EXTRUDER_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
// #define EXTRUDER_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
// The speed change that does not require acceleration (i.e. the software might assume it can be done instantaneously)
#define DEFAULT_XYJERK 10.0 // (mm/sec)
#define DEFAULT_ZJERK 10.0 // (mm/sec)
#define DEFAULT_EJERK 5.0 // (mm/sec)
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
// Custom M code points
//#define CUSTOM_M_CODES
#ifdef CUSTOM_M_CODES
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
#define Z_PROBE_OFFSET_RANGE_MIN -15
#define Z_PROBE_OFFSET_RANGE_MAX -5
#endif
// EEPROM
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
#define EEPROM_SETTINGS
//to disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
// please keep turned on if you can.
#define EEPROM_CHITCHAT
// Preheat Constants
#define PLA_PREHEAT_HOTEND_TEMP 180
#define PLA_PREHEAT_HPB_TEMP 70
#define PLA_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
#define ABS_PREHEAT_HOTEND_TEMP 240
#define ABS_PREHEAT_HPB_TEMP 100
#define ABS_PREHEAT_FAN_SPEED 255 // Insert Value between 0 and 255
//LCD and SD support
//#define ULTRA_LCD //general LCD support, also 16x2
//#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
//#define SDSLOW // Use slower SD transfer mode (not normally needed - uncomment if you're getting volume init error)
//#define SD_CHECK_AND_RETRY // Use CRC checks and retries on the SD communication
//#define ENCODER_PULSES_PER_STEP 1 // Increase if you have a high resolution encoder
//#define ENCODER_STEPS_PER_MENU_ITEM 5 // Set according to ENCODER_PULSES_PER_STEP or your liking
//#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
//#define ULTIPANEL //the UltiPanel as on Thingiverse
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
// The GADGETS3D G3D LCD/SD Controller (blue PCB)
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//#define G3D_PANEL
// The RepRapDiscount FULL GRAPHIC Smart Controller (quadratic white PCB)
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
// The RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // how much should be moved when a key is pressed, eg 10.0 means 10mm per click
// The Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
// REMEMBER TO INSTALL LiquidCrystal_I2C.h in your ARUDINO library folder: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//#define RA_CONTROL_PANEL
//automatic expansion
#if defined (MAKRPANEL)
#define DOGLCD
#define SDSUPPORT
#define ULTIPANEL
#define NEWPANEL
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920
#define REPRAP_DISCOUNT_SMART_CONTROLLER
#endif
#if defined(ULTIMAKERCONTROLLER) || defined(REPRAP_DISCOUNT_SMART_CONTROLLER) || defined(G3D_PANEL)
#define ULTIPANEL
#define NEWPANEL
#endif
#if defined(REPRAPWORLD_KEYPAD)
#define NEWPANEL
#define ULTIPANEL
#endif
#if defined(RA_CONTROL_PANEL)
#define ULTIPANEL
#define NEWPANEL
#define LCD_I2C_TYPE_PCA8574
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#endif
//I2C PANELS
//#define LCD_I2C_SAINSMART_YWROBOT
#ifdef LCD_I2C_SAINSMART_YWROBOT
// This uses the LiquidCrystal_I2C library ( https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home )
// Make sure it is placed in the Arduino libraries directory.
#define LCD_I2C_TYPE_PCF8575
#define LCD_I2C_ADDRESS 0x27 // I2C Address of the port expander
#define NEWPANEL
#define ULTIPANEL
#endif
// PANELOLU2 LCD with status LEDs, separate encoder and click inputs
//#define LCD_I2C_PANELOLU2
#ifdef LCD_I2C_PANELOLU2
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// (v1.2.3 no longer requires you to define PANELOLU in the LiquidTWI2.h library header file)
// Note: The PANELOLU2 encoder click input can either be directly connected to a pin
// (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD
#define NEWPANEL
#define ULTIPANEL
#ifndef ENCODER_PULSES_PER_STEP
#define ENCODER_PULSES_PER_STEP 4
#endif
#ifndef ENCODER_STEPS_PER_MENU_ITEM
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#ifdef LCD_USE_I2C_BUZZER
#define LCD_FEEDBACK_FREQUENCY_HZ 1000
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
#endif
#endif
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
#ifdef LCD_I2C_VIKI
// This uses the LiquidTWI2 library v1.2.3 or later ( https://github.com/lincomatic/LiquidTWI2 )
// Make sure the LiquidTWI2 directory is placed in the Arduino or Sketchbook libraries subdirectory.
// Note: The pause/stop/resume LCD button pin should be connected to the Arduino
// BTN_ENC pin (or set BTN_ENC to -1 if not used)
#define LCD_I2C_TYPE_MCP23017
#define LCD_I2C_ADDRESS 0x20 // I2C Address of the port expander
#define LCD_USE_I2C_BUZZER //comment out to disable buzzer on LCD (requires LiquidTWI2 v1.2.3 or later)
#define NEWPANEL
#define ULTIPANEL
#endif
// Shift register panels
// ---------------------
// 2 wire Non-latching LCD SR from:
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
//#define SR_LCD
#ifdef SR_LCD
#define SR_LCD_2W_NL // Non latching 2 wire shift register
//#define NEWPANEL
#endif
#ifdef ULTIPANEL
// #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the DOG graphic display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#endif
#else //no panel but just LCD
#ifdef ULTRA_LCD
#ifdef DOGLCD // Change number of lines to match the 128x64 graphics display
#define LCD_WIDTH 20
#define LCD_HEIGHT 5
#else
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
#endif
// default LCD contrast for dogm-like LCD displays
#ifdef DOGLCD
# ifndef DEFAULT_LCD_CONTRAST
# define DEFAULT_LCD_CONTRAST 32
# endif
#endif
// Increase the FAN pwm frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Temperature status LEDs that display the hotend and bet temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not ass annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
// #define PHOTOGRAPH_PIN 23
// SF send wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Servo Endstops
//
// This allows for servo actuated endstops, primary usage is for the Z Axis to eliminate calibration or bed height changes.
// Use M206 command to correct for switch height offset to actual nozzle height. Store that setting with M500.
//
//#define SERVO_ENDSTOPS {-1, -1, 0} // Servo index for X, Y, Z. Disable with -1
//#define SERVO_ENDSTOP_ANGLES {0,0, 0,0, 70,0} // X,Y,Z Axis Extend and Retract angles
#include "Configuration_adv.h"
#include "thermistortables.h"
#endif //__CONFIGURATION_H

@ -0,0 +1,507 @@
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
#ifdef BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
//// Heating sanity check:
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero.
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature
// differ by at least 2x WATCH_TEMP_INCREASE
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
#ifdef PIDTEMP
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
#define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (1) //heating power=Kc*(e_speed)
#endif
#endif
//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode.
//The maximum buffered steps/sec of the extruder motor are called "se".
//You enter the autotemp mode by a M109 S<mintemp> B<maxtemp> F<factor>
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
// on an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
#define AUTOTEMP
#ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
// extruder run-out prevention.
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
//#define EXTRUDER_RUNOUT_PREVENT
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30.
#define EXTRUDER_RUNOUT_ESTEPS 14. //mm filament
#define EXTRUDER_RUNOUT_SPEED 1500. //extrusion speed
#define EXTRUDER_RUNOUT_EXTRUDE 100
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
// Multiple extruders can be assigned to the same pin in which case
// the fan will turn on when any selected extruder is above the threshold.
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
//// AUTOSET LOCATIONS OF LIMIT SWITCHES
//// Added by ZetaPhoenix 09-15-2012
#ifdef MANUAL_HOME_POSITIONS // Use manual limit switch locations
#define X_HOME_POS MANUAL_X_HOME_POS
#define Y_HOME_POS MANUAL_Y_HOME_POS
#define Z_HOME_POS MANUAL_Z_HOME_POS
#else //Set min/max homing switch positions based upon homing direction and min/max travel limits
//X axis
#if X_HOME_DIR == -1
#ifdef BED_CENTER_AT_0_0
#define X_HOME_POS X_MAX_LENGTH * -0.5
#else
#define X_HOME_POS X_MIN_POS
#endif //BED_CENTER_AT_0_0
#else
#ifdef BED_CENTER_AT_0_0
#define X_HOME_POS X_MAX_LENGTH * 0.5
#else
#define X_HOME_POS X_MAX_POS
#endif //BED_CENTER_AT_0_0
#endif //X_HOME_DIR == -1
//Y axis
#if Y_HOME_DIR == -1
#ifdef BED_CENTER_AT_0_0
#define Y_HOME_POS Y_MAX_LENGTH * -0.5
#else
#define Y_HOME_POS Y_MIN_POS
#endif //BED_CENTER_AT_0_0
#else
#ifdef BED_CENTER_AT_0_0
#define Y_HOME_POS Y_MAX_LENGTH * 0.5
#else
#define Y_HOME_POS Y_MAX_POS
#endif //BED_CENTER_AT_0_0
#endif //Y_HOME_DIR == -1
// Z axis
#if Z_HOME_DIR == -1 //BED_CENTER_AT_0_0 not used
#define Z_HOME_POS Z_MIN_POS
#else
#define Z_HOME_POS Z_MAX_POS
#endif //Z_HOME_DIR == -1
#endif //End auto min/max positions
//END AUTOSET LOCATIONS OF LIMIT SWITCHES -ZP
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this define to utilize a separate stepper driver for each Z axis motor.
// Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used
// to control the 2nd Z axis stepper motor). The pins are currently only defined for a RAMPS motherboards.
// On a RAMPS (or other 5 driver) motherboard, using this feature will limit you to using 1 extruder.
//#define Z_DUAL_STEPPER_DRIVERS
#ifdef Z_DUAL_STEPPER_DRIVERS
#undef EXTRUDERS
#define EXTRUDERS 1
#endif
// Same again but for Y Axis.
//#define Y_DUAL_STEPPER_DRIVERS
// Define if the two Y drives need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#ifdef Y_DUAL_STEPPER_DRIVERS
#undef EXTRUDERS
#define EXTRUDERS 1
#endif
#if defined (Z_DUAL_STEPPER_DRIVERS) && defined (Y_DUAL_STEPPER_DRIVERS)
#error "You cannot have dual drivers for both Y and Z"
#endif
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
//#define DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
#define X2_ENABLE_PIN 29
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
// As the x-carriages are independent we can now account for any relative Z offset
#define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 3
#define Y_HOME_RETRACT_MM 3
#define Z_HOME_RETRACT_MM 3
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
#ifdef SCARA
#define QUICK_HOME //SCARA needs Quickhome
#endif
#define AXIS_RELATIVE_MODES {false, false, false, false}
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
//default stepper release if idle
#define DEFAULT_STEPPER_DEACTIVE_TIME 240
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// Feedrates for manual moves along X, Y, Z, E from panel
#ifdef ULTIPANEL
#define MANUAL_FEEDRATE {50*60, 50*60, 10*60, 60} // set the speeds for manual moves (mm/min)
#endif
//Comment to disable setting feedrate multiplier via encoder
#ifdef ULTIPANEL
#define ULTIPANEL_FEEDMULTIPLY
#endif
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
//#define SLOWDOWN
#ifdef SCARA
#undef SLOWDOWN
#endif
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// MS1 MS2 Stepper Driver Microstepping mode table
#define MICROSTEP1 LOW,LOW
#define MICROSTEP2 HIGH,LOW
#define MICROSTEP4 LOW,HIGH
#define MICROSTEP8 HIGH,HIGH
#define MICROSTEP16 HIGH,HIGH
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
// The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
//#define USE_WATCHDOG
#ifdef USE_WATCHDOG
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!
//#define BABYSTEPPING
#ifdef BABYSTEPPING
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#ifdef COREXY
#error BABYSTEPPING not implemented for COREXY yet.
#endif
#ifdef DELTA
#ifdef BABYSTEP_XY
#error BABYSTEPPING only implemented for Z axis on deltabots.
#endif
#endif
#ifdef SCARA
#error BABYSTEPPING not implemented for SCARA yet.
#endif
#endif
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 1.75
#define STEPS_MM_E 836
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
// Arc interpretation settings:
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
const unsigned int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
// If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted
// You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT
// in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should
// be commented out otherwise
#define SDCARDDETECTINVERTED
#ifdef ULTIPANEL
#undef SDCARDDETECTINVERTED
#endif
// Power Signal Control Definitions
// By default use ATX definition
#ifndef POWER_SUPPLY
#define POWER_SUPPLY 1
#endif
// 1 = ATX
#if (POWER_SUPPLY == 1)
#define PS_ON_AWAKE LOW
#define PS_ON_ASLEEP HIGH
#endif
// 2 = X-Box 360 203W
#if (POWER_SUPPLY == 2)
#define PS_ON_AWAKE HIGH
#define PS_ON_ASLEEP LOW
#endif
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//===========================================================================
//=============================Buffers ============================
//===========================================================================
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#if defined SDSUPPORT
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
//The ASCII buffer for receiving from the serial:
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Firmware based and LCD controlled retract
// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.
// #define FWRETRACT //ONLY PARTIALLY TESTED
#ifdef FWRETRACT
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 3 //default retract length (positive mm)
#define RETRACT_FEEDRATE 30 //default feedrate for retracting (mm/s)
#define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s)
#endif
//adds support for experimental filament exchange support M600; requires display
#ifdef ULTIPANEL
#define FILAMENTCHANGEENABLE
#ifdef FILAMENTCHANGEENABLE
#define FILAMENTCHANGE_XPOS 3
#define FILAMENTCHANGE_YPOS 3
#define FILAMENTCHANGE_ZADD 10
#define FILAMENTCHANGE_FIRSTRETRACT -2
#define FILAMENTCHANGE_FINALRETRACT -100
#endif
#endif
#ifdef FILAMENTCHANGEENABLE
#ifdef EXTRUDER_RUNOUT_PREVENT
#error EXTRUDER_RUNOUT_PREVENT currently incompatible with FILAMENTCHANGE
#endif
#endif
//===========================================================================
//============================= Define Defines ============================
//===========================================================================
#if EXTRUDERS > 1 && defined TEMP_SENSOR_1_AS_REDUNDANT
#error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"
#endif
#if EXTRUDERS > 1 && defined HEATERS_PARALLEL
#error "You cannot use HEATERS_PARALLEL if EXTRUDERS > 1"
#endif
#if TEMP_SENSOR_0 > 0
#define THERMISTORHEATER_0 TEMP_SENSOR_0
#define HEATER_0_USES_THERMISTOR
#endif
#if TEMP_SENSOR_1 > 0
#define THERMISTORHEATER_1 TEMP_SENSOR_1
#define HEATER_1_USES_THERMISTOR
#endif
#if TEMP_SENSOR_2 > 0
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
#endif
#if TEMP_SENSOR_0 == -1
#define HEATER_0_USES_AD595
#endif
#if TEMP_SENSOR_1 == -1
#define HEATER_1_USES_AD595
#endif
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#endif
#if TEMP_SENSOR_0 == -2
#define HEATER_0_USES_MAX6675
#endif
#if TEMP_SENSOR_0 == 0
#undef HEATER_0_MINTEMP
#undef HEATER_0_MAXTEMP
#endif
#if TEMP_SENSOR_1 == 0
#undef HEATER_1_MINTEMP
#undef HEATER_1_MAXTEMP
#endif
#if TEMP_SENSOR_2 == 0
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#endif
#if TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP
#endif
#endif //__CONFIGURATION_ADV_H

@ -1021,81 +1021,6 @@ const short temptable_1047[][2] PROGMEM = {
PtLine(300,1000,4700) PtLine(300,1000,4700)
}; };
#endif #endif
#if (THERMISTORHEATER_0 == 70) || (THERMISTORHEATER_1 == 70) || (THERMISTORHEATER_2 == 70) || (THERMISTORBED == 70) // 500C thermistor for Pico hot end
const short temptable_70[][2] PROGMEM = {
{ 110.774119598719*OVERSAMPLENR , 350 },
{ 118.214386957249*OVERSAMPLENR , 345 },
{ 126.211418543166*OVERSAMPLENR , 340 },
{ 134.789559066223*OVERSAMPLENR , 335 },
{ 144.004513869701*OVERSAMPLENR , 330 },
{ 153.884483790827*OVERSAMPLENR , 325 },
{ 164.484880793637*OVERSAMPLENR , 320 },
{ 175.848885102724*OVERSAMPLENR , 315 },
{ 188.006799079015*OVERSAMPLENR , 310 },
{ 201.008072969044*OVERSAMPLENR , 305 },
{ 214.83716032276*OVERSAMPLENR , 300 },
{ 229.784739779664*OVERSAMPLENR , 295 },
{ 245.499466045473*OVERSAMPLENR , 290 },
{ 262.2766342096*OVERSAMPLENR , 285 },
{ 280.073883176433*OVERSAMPLENR , 280 },
{ 298.952693467726*OVERSAMPLENR , 275 },
{ 318.808251051674*OVERSAMPLENR , 270 },
{ 337.490932563222*OVERSAMPLENR , 265 },
{ 361.683649122745*OVERSAMPLENR , 260 },
{ 384.717024083981*OVERSAMPLENR , 255 },
{ 408.659301759076*OVERSAMPLENR , 250 },
{ 433.471659455884*OVERSAMPLENR , 245 },
{ 459.199039926034*OVERSAMPLENR , 240 },
{ 485.566500982316*OVERSAMPLENR , 235 },
{ 512.538918631075*OVERSAMPLENR , 230 },
{ 539.980999544838*OVERSAMPLENR , 225 },
{ 567.783095549935*OVERSAMPLENR , 220 },
{ 595.698041673552*OVERSAMPLENR , 215 },
{ 623.633922319597*OVERSAMPLENR , 210 },
{ 651.356162750829*OVERSAMPLENR , 205 },
{ 678.700901620956*OVERSAMPLENR , 200 },
{ 705.528145361264*OVERSAMPLENR , 195 },
{ 731.61267976339*OVERSAMPLENR , 190 },
{ 756.786212184365*OVERSAMPLENR , 185 },
{ 780.950223357761*OVERSAMPLENR , 180 },
{ 804.012961595082*OVERSAMPLENR , 175 },
{ 825.904975939166*OVERSAMPLENR , 170 },
{ 846.403941639008*OVERSAMPLENR , 165 },
{ 865.52326974895*OVERSAMPLENR , 160 },
{ 883.246145367727*OVERSAMPLENR , 155 },
{ 899.5821946515*OVERSAMPLENR , 150 },
{ 914.544289228582*OVERSAMPLENR , 145 },
{ 928.145628221761*OVERSAMPLENR , 140 },
{ 940.422208546562*OVERSAMPLENR , 135 },
{ 951.456922916497*OVERSAMPLENR , 130 },
{ 961.303500633788*OVERSAMPLENR , 125 },
{ 970.044756889055*OVERSAMPLENR , 120 },
{ 977.761456230051*OVERSAMPLENR , 115 },
{ 984.540978083453*OVERSAMPLENR , 110 },
{ 990.440780765757*OVERSAMPLENR , 105 },
{ 995.589621465301*OVERSAMPLENR , 100 },
{ 1000.02514280144*OVERSAMPLENR , 95 },
{ 1003.84429789876*OVERSAMPLENR , 90 },
{ 1007.10199009318*OVERSAMPLENR , 85 },
{ 1009.87151698323*OVERSAMPLENR , 80 },
{ 1012.21633594237*OVERSAMPLENR , 75 },
{ 1014.18959892949*OVERSAMPLENR , 70 },
{ 1015.84079162998*OVERSAMPLENR , 65 },
{ 1017.21555915335*OVERSAMPLENR , 60 },
{ 1018.35284662863*OVERSAMPLENR , 55 },
{ 1019.28926921888*OVERSAMPLENR , 50 },
{ 1020.05398015669*OVERSAMPLENR , 45 },
{ 1020.67737496272*OVERSAMPLENR , 40 },
{ 1021.1802909627*OVERSAMPLENR , 35 },
{ 1021.58459281248*OVERSAMPLENR , 30 },
{ 1021.90701441192*OVERSAMPLENR , 25 },
{ 1022.16215103698*OVERSAMPLENR , 20 },
{ 1022.36275529549*OVERSAMPLENR , 15 },
{ 1022.51930392497*OVERSAMPLENR , 10 },
{ 1022.64051573734*OVERSAMPLENR , 5 },
{ 1022.73355805611*OVERSAMPLENR , 0 }
};
#endif
#define _TT_NAME(_N) temptable_ ## _N #define _TT_NAME(_N) temptable_ ## _N
#define TT_NAME(_N) _TT_NAME(_N) #define TT_NAME(_N) _TT_NAME(_N)

@ -867,6 +867,10 @@ static void lcd_control_motion_menu()
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999);
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit); MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit);
#endif
#ifdef SCARA
MENU_ITEM_EDIT(float74, MSG_XSCALE, &axis_scaling[X_AXIS],0.5,2);
MENU_ITEM_EDIT(float74, MSG_YSCALE, &axis_scaling[Y_AXIS],0.5,2);
#endif #endif
END_MENU(); END_MENU();
} }

@ -47,6 +47,7 @@ Features:
* PID tuning * PID tuning
* CoreXY kinematics (www.corexy.com/theory.html) * CoreXY kinematics (www.corexy.com/theory.html)
* Delta kinematics * Delta kinematics
* SCARA kinematics
* Dual X-carriage support for multiple extruder systems * Dual X-carriage support for multiple extruder systems
* Configurable serial port to support connection of wireless adaptors. * Configurable serial port to support connection of wireless adaptors.
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature * Automatic operation of extruder/cold-end cooling fans based on nozzle temperature

Loading…
Cancel
Save