|
|
|
@ -44,6 +44,17 @@
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
|
|
|
uint8_t rx_dropped_bytes = 0;
|
|
|
|
|
#endif
|
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
|
|
|
ring_buffer_pos_t rx_max_enqueued = 0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
|
|
|
|
|
|
|
|
#include "stepper.h"
|
|
|
|
@ -136,20 +147,94 @@
|
|
|
|
|
|
|
|
|
|
#endif // EMERGENCY_PARSER
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE void store_char(unsigned char c) {
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
const uint8_t h = rx_buffer.head,
|
|
|
|
|
i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1);
|
|
|
|
|
FORCE_INLINE void store_rxd_char() {
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head,
|
|
|
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// if we should be storing the received character into the location
|
|
|
|
|
// just before the tail (meaning that the head would advance to the
|
|
|
|
|
// current location of the tail), we're about to overflow the buffer
|
|
|
|
|
// and so we don't write the character or advance the head.
|
|
|
|
|
if (i != rx_buffer.tail) {
|
|
|
|
|
rx_buffer.buffer[h] = c;
|
|
|
|
|
rx_buffer.buffer[h] = M_UDRx;
|
|
|
|
|
rx_buffer.head = i;
|
|
|
|
|
}
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
else {
|
|
|
|
|
(void)M_UDRx;
|
|
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
|
|
|
if (!++rx_dropped_bytes)
|
|
|
|
|
++rx_dropped_bytes;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
|
|
|
{
|
|
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// Keep track of the maximum count of enqueued bytes
|
|
|
|
|
if (rx_max_enqueued < rx_count)
|
|
|
|
|
rx_max_enqueued = rx_count;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
|
|
|
|
|
// for high speed transfers, we can use XON/XOFF protocol to do
|
|
|
|
|
// software handshake and avoid overruns.
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
|
|
|
|
|
|
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// if we are above 12.5% of RX buffer capacity, send XOFF before
|
|
|
|
|
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
|
|
|
|
|
// let the host react and stop sending bytes. This translates to 13mS
|
|
|
|
|
// propagation time.
|
|
|
|
|
if (rx_count >= (RX_BUFFER_SIZE/8)) {
|
|
|
|
|
|
|
|
|
|
// If TX interrupts are disabled and data register is empty,
|
|
|
|
|
// just write the byte to the data register and be done. This
|
|
|
|
|
// shortcut helps significantly improve the effective datarate
|
|
|
|
|
// at high (>500kbit/s) bitrates, where interrupt overhead
|
|
|
|
|
// becomes a slowdown.
|
|
|
|
|
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) {
|
|
|
|
|
|
|
|
|
|
// Send an XOFF character
|
|
|
|
|
M_UDRx = XOFF_CHAR;
|
|
|
|
|
|
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
|
|
|
// location". This makes sure flush() won't return until the bytes
|
|
|
|
|
// actually got written
|
|
|
|
|
SBI(M_UCSRxA, M_TXCx);
|
|
|
|
|
|
|
|
|
|
// And remember we already sent it
|
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
|
|
// TX interrupts disabled, but buffer still not empty ... or
|
|
|
|
|
// TX interrupts enabled. Reenable TX ints and schedule XOFF
|
|
|
|
|
// character to be sent
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
|
|
|
|
|
|
SBI(M_UCSRxB, M_UDRIEx);
|
|
|
|
|
xon_xoff_state = XOFF_CHAR;
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
// We are not using TX interrupts, we will have to send this manually
|
|
|
|
|
while (!TEST(M_UCSRxA, M_UDREx))
|
|
|
|
|
;
|
|
|
|
|
M_UDRx = XOFF_CHAR;
|
|
|
|
|
|
|
|
|
|
// And remember we already sent it
|
|
|
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
|
|
|
emergency_parser(c);
|
|
|
|
@ -160,13 +245,31 @@
|
|
|
|
|
|
|
|
|
|
FORCE_INLINE void _tx_udr_empty_irq(void) {
|
|
|
|
|
// If interrupts are enabled, there must be more data in the output
|
|
|
|
|
// buffer. Send the next byte
|
|
|
|
|
// buffer.
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
|
|
|
|
|
// If we must do a priority insertion of an XON/XOFF char,
|
|
|
|
|
// do it now
|
|
|
|
|
uint8_t state = xon_xoff_state;
|
|
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
|
|
|
M_UDRx = state & XON_XOFF_CHAR_MASK;
|
|
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Send the next byte
|
|
|
|
|
const uint8_t t = tx_buffer.tail,
|
|
|
|
|
c = tx_buffer.buffer[t];
|
|
|
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
M_UDRx = c;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
|
|
|
// location". This makes sure flush() won't return until the bytes
|
|
|
|
|
// actually got written
|
|
|
|
@ -188,8 +291,7 @@
|
|
|
|
|
|
|
|
|
|
#ifdef M_USARTx_RX_vect
|
|
|
|
|
ISR(M_USARTx_RX_vect) {
|
|
|
|
|
const unsigned char c = M_UDRx;
|
|
|
|
|
store_char(c);
|
|
|
|
|
store_rxd_char();
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
@ -237,8 +339,9 @@
|
|
|
|
|
|
|
|
|
|
void MarlinSerial::checkRx(void) {
|
|
|
|
|
if (TEST(M_UCSRxA, M_RXCx)) {
|
|
|
|
|
const uint8_t c = M_UDRx;
|
|
|
|
|
store_char(c);
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
store_rxd_char();
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -252,23 +355,52 @@
|
|
|
|
|
int MarlinSerial::read(void) {
|
|
|
|
|
int v;
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
const uint8_t t = rx_buffer.tail;
|
|
|
|
|
const ring_buffer_pos_t t = rx_buffer.tail;
|
|
|
|
|
if (rx_buffer.head == t)
|
|
|
|
|
v = -1;
|
|
|
|
|
else {
|
|
|
|
|
v = rx_buffer.buffer[t];
|
|
|
|
|
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1);
|
|
|
|
|
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
|
|
|
|
|
// for high speed transfers, we can use XON/XOFF protocol to do
|
|
|
|
|
// software handshake and avoid overruns.
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
|
|
|
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
|
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
|
|
|
|
|
|
// if we are below 10% of RX buffer capacity, send XON before
|
|
|
|
|
// we run out of RX buffer bytes
|
|
|
|
|
if (rx_count < (RX_BUFFER_SIZE/10)) {
|
|
|
|
|
|
|
|
|
|
// Send an XON character
|
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
// End critical section
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
|
|
// Transmit the XON character
|
|
|
|
|
writeNoHandshake(XON_CHAR);
|
|
|
|
|
|
|
|
|
|
// Done
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
return v;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
uint8_t MarlinSerial::available(void) {
|
|
|
|
|
ring_buffer_pos_t MarlinSerial::available(void) {
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
const uint8_t h = rx_buffer.head,
|
|
|
|
|
const ring_buffer_pos_t h = rx_buffer.head,
|
|
|
|
|
t = rx_buffer.tail;
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
|
|
|
|
|
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MarlinSerial::flush(void) {
|
|
|
|
@ -281,6 +413,20 @@
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
rx_buffer.head = rx_buffer.tail;
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
|
|
|
|
|
// for high speed transfers, we can use XON/XOFF protocol to do
|
|
|
|
|
// software handshake and avoid overruns.
|
|
|
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
|
|
|
|
|
|
|
|
// Send an XON character
|
|
|
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
|
|
|
|
|
|
|
|
// Transmit the XON character
|
|
|
|
|
writeNoHandshake(XON_CHAR);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
@ -293,10 +439,26 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MarlinSerial::write(const uint8_t c) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
uint8_t state = xon_xoff_state;
|
|
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
|
|
|
// 2 characters to send: The XON/XOFF character and the user
|
|
|
|
|
// specified char.
|
|
|
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
|
|
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
writeNoHandshake(c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MarlinSerial::writeNoHandshake(uint8_t c) {
|
|
|
|
|
|
|
|
|
|
_written = true;
|
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
bool emty = (tx_buffer.head == tx_buffer.tail);
|
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
|
|
// If the buffer and the data register is empty, just write the byte
|
|
|
|
|
// to the data register and be done. This shortcut helps
|
|
|
|
|
// significantly improve the effective datarate at high (>
|
|
|
|
@ -335,6 +497,7 @@
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void MarlinSerial::flushTX(void) {
|
|
|
|
|
// TX
|
|
|
|
|
// If we have never written a byte, no need to flush. This special
|
|
|
|
@ -357,6 +520,21 @@
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
void MarlinSerial::write(uint8_t c) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
|
// If we must do a priority insertion of an XON/XOFF char, do it now
|
|
|
|
|
uint8_t state = xon_xoff_state;
|
|
|
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
|
|
|
|
|
|
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
|
|
|
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
writeNoHandshake(c);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MarlinSerial::writeNoHandshake(uint8_t c) {
|
|
|
|
|
while (!TEST(M_UCSRxA, M_UDREx))
|
|
|
|
|
;
|
|
|
|
|
M_UDRx = c;
|
|
|
|
|