|
|
@ -9793,34 +9793,43 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
// gives the number of segments
|
|
|
|
// gives the number of segments
|
|
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
|
|
|
|
|
|
|
|
// For SCARA minimum segment size is 0.5mm
|
|
|
|
// For SCARA minimum segment size is 0.25mm
|
|
|
|
#if IS_SCARA
|
|
|
|
#if IS_SCARA
|
|
|
|
NOMORE(segments, cartesian_mm * 2);
|
|
|
|
NOMORE(segments, cartesian_mm * 4);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// At least one segment is required
|
|
|
|
// At least one segment is required
|
|
|
|
NOLESS(segments, 1);
|
|
|
|
NOLESS(segments, 1);
|
|
|
|
|
|
|
|
|
|
|
|
// The approximate length of each segment
|
|
|
|
// The approximate length of each segment
|
|
|
|
float segment_distance[XYZE] = {
|
|
|
|
const float inv_segments = 1.0 / float(segments),
|
|
|
|
difference[X_AXIS] / segments,
|
|
|
|
segment_distance[XYZE] = {
|
|
|
|
difference[Y_AXIS] / segments,
|
|
|
|
difference[X_AXIS] * inv_segments,
|
|
|
|
difference[Z_AXIS] / segments,
|
|
|
|
difference[Y_AXIS] * inv_segments,
|
|
|
|
difference[E_AXIS] / segments
|
|
|
|
difference[Z_AXIS] * inv_segments,
|
|
|
|
};
|
|
|
|
difference[E_AXIS] * inv_segments
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
|
|
|
|
|
|
|
|
// Drop one segment so the last move is to the exact target.
|
|
|
|
#if IS_SCARA
|
|
|
|
// If there's only 1 segment, loops will be skipped entirely.
|
|
|
|
// SCARA needs to scale the feed rate from mm/s to degrees/s
|
|
|
|
--segments;
|
|
|
|
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
|
|
|
|
|
|
|
|
feed_factor = inv_segment_length * _feedrate_mm_s;
|
|
|
|
|
|
|
|
float oldA = stepper.get_axis_position_degrees(A_AXIS),
|
|
|
|
|
|
|
|
oldB = stepper.get_axis_position_degrees(B_AXIS);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Get the logical current position as starting point
|
|
|
|
// Get the logical current position as starting point
|
|
|
|
float logical[XYZE];
|
|
|
|
float logical[XYZE];
|
|
|
|
COPY(logical, current_position);
|
|
|
|
COPY(logical, current_position);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Drop one segment so the last move is to the exact target.
|
|
|
|
|
|
|
|
// If there's only 1 segment, loops will be skipped entirely.
|
|
|
|
|
|
|
|
--segments;
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate and execute the segments
|
|
|
|
// Calculate and execute the segments
|
|
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
|
|
LOOP_XYZE(i) logical[i] += segment_distance[i];
|
|
|
|
LOOP_XYZE(i) logical[i] += segment_distance[i];
|
|
|
@ -9829,13 +9838,37 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
|
|
|
|
ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
|
|
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
|
|
|
|
|
|
// Use ratio between the length of the move and the larger angle change
|
|
|
|
|
|
|
|
const float adiff = abs(delta[A_AXIS] - oldA),
|
|
|
|
|
|
|
|
bdiff = abs(delta[B_AXIS] - oldB);
|
|
|
|
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
|
|
|
|
|
|
|
|
oldA = delta[A_AXIS];
|
|
|
|
|
|
|
|
oldB = delta[B_AXIS];
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Since segment_distance is only approximate,
|
|
|
|
// Since segment_distance is only approximate,
|
|
|
|
// the final move must be to the exact destination.
|
|
|
|
// the final move must be to the exact destination.
|
|
|
|
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
|
|
|
|
|
|
|
|
|
|
|
#if IS_SCARA
|
|
|
|
|
|
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
|
|
|
|
|
|
// With segments > 1 length is 1 segment, otherwise total length
|
|
|
|
|
|
|
|
inverse_kinematics(ltarget);
|
|
|
|
|
|
|
|
ADJUST_DELTA(logical);
|
|
|
|
|
|
|
|
const float adiff = abs(delta[A_AXIS] - oldA),
|
|
|
|
|
|
|
|
bdiff = abs(delta[B_AXIS] - oldB);
|
|
|
|
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|