|
|
@ -7992,9 +7992,9 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
* This calls planner.buffer_line several times, adding
|
|
|
|
* This calls planner.buffer_line several times, adding
|
|
|
|
* small incremental moves for DELTA or SCARA.
|
|
|
|
* small incremental moves for DELTA or SCARA.
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
|
|
|
|
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
|
|
|
|
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
|
|
|
|
|
|
|
|
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
@ -8013,18 +8013,18 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
float fraction = float(s) * inv_steps;
|
|
|
|
float fraction = float(s) * inv_steps;
|
|
|
|
|
|
|
|
|
|
|
|
LOOP_XYZE(i)
|
|
|
|
LOOP_XYZE(i)
|
|
|
|
target[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
logical[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
|
|
|
|
|
|
|
|
inverse_kinematics(target);
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
|
|
|
if (!bed_leveling_in_progress) adjust_delta(target);
|
|
|
|
if (!bed_leveling_in_progress) adjust_delta(logical);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", target);
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", logical);
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", delta);
|
|
|
|
//DEBUG_POS("prepare_kinematic_move_to", delta);
|
|
|
|
|
|
|
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -8156,7 +8156,7 @@ void prepare_move_to_destination() {
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
void plan_arc(
|
|
|
|
void plan_arc(
|
|
|
|
float target[NUM_AXIS], // Destination position
|
|
|
|
float logical[NUM_AXIS], // Destination position
|
|
|
|
float* offset, // Center of rotation relative to current_position
|
|
|
|
float* offset, // Center of rotation relative to current_position
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
uint8_t clockwise // Clockwise?
|
|
|
|
) {
|
|
|
|
) {
|
|
|
@ -8164,12 +8164,12 @@ void prepare_move_to_destination() {
|
|
|
|
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
|
|
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
r_Y = -offset[Y_AXIS],
|
|
|
|
r_Y = -offset[Y_AXIS],
|
|
|
|
rt_X = target[X_AXIS] - center_X,
|
|
|
|
rt_X = logical[X_AXIS] - center_X,
|
|
|
|
rt_Y = target[Y_AXIS] - center_Y;
|
|
|
|
rt_Y = logical[Y_AXIS] - center_Y;
|
|
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
|
@ -8177,7 +8177,7 @@ void prepare_move_to_destination() {
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
|
|
|
|
if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
|
|
|
|
float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
|
|
|
@ -8282,13 +8282,13 @@ void prepare_move_to_destination() {
|
|
|
|
|
|
|
|
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
// Ensure last segment arrives at target location.
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
inverse_kinematics(target);
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
|
|
|
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
|
|
|
adjust_delta(target);
|
|
|
|
adjust_delta(logical);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
|
|
|
|
planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
@ -8303,7 +8303,7 @@ void prepare_move_to_destination() {
|
|
|
|
void plan_cubic_move(const float offset[4]) {
|
|
|
|
void plan_cubic_move(const float offset[4]) {
|
|
|
|
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
|
|
|
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
|
|
|
|
|
|
|
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
|
|
// As far as the parser is concerned, the position is now == destination. In reality the
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
// motion control system might still be processing the action and the real tool position
|
|
|
|
// in any intermediate location.
|
|
|
|
// in any intermediate location.
|
|
|
|
set_current_to_destination();
|
|
|
|
set_current_to_destination();
|
|
|
@ -8376,7 +8376,7 @@ void prepare_move_to_destination() {
|
|
|
|
//*/
|
|
|
|
//*/
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void inverse_kinematics(const float cartesian[XYZ]) {
|
|
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
|
|
// Inverse kinematics.
|
|
|
|
// Inverse kinematics.
|
|
|
|
// Perform SCARA IK and place results in delta[].
|
|
|
|
// Perform SCARA IK and place results in delta[].
|
|
|
|
// The maths and first version were done by QHARLEY.
|
|
|
|
// The maths and first version were done by QHARLEY.
|
|
|
@ -8384,8 +8384,8 @@ void prepare_move_to_destination() {
|
|
|
|
|
|
|
|
|
|
|
|
static float C2, S2, SK1, SK2, THETA, PSI;
|
|
|
|
static float C2, S2, SK1, SK2, THETA, PSI;
|
|
|
|
|
|
|
|
|
|
|
|
float sx = RAW_X_POSITION(cartesian[X_AXIS]) - SCARA_OFFSET_X, //Translate SCARA to standard X Y
|
|
|
|
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
|
|
|
|
sy = RAW_Y_POSITION(cartesian[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
|
|
|
|
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
|
|
|
|
|
|
|
|
|
|
|
|
#if (L1 == L2)
|
|
|
|
#if (L1 == L2)
|
|
|
|
C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
|
|
|
|
C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
|
|
|
@ -8403,10 +8403,10 @@ void prepare_move_to_destination() {
|
|
|
|
|
|
|
|
|
|
|
|
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
|
|
|
|
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
|
|
|
|
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
|
|
|
|
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
|
|
|
|
delta[Z_AXIS] = cartesian[Z_AXIS];
|
|
|
|
delta[Z_AXIS] = logical[Z_AXIS];
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
/*
|
|
|
|
DEBUG_POS("SCARA IK", cartesian);
|
|
|
|
DEBUG_POS("SCARA IK", logical);
|
|
|
|
DEBUG_POS("SCARA IK", delta);
|
|
|
|
DEBUG_POS("SCARA IK", delta);
|
|
|
|
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
|
|
|
|
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
|
|
|
|
SERIAL_ECHOPAIR(",", sy);
|
|
|
|
SERIAL_ECHOPAIR(",", sy);
|
|
|
|