|
|
|
@ -31,10 +31,14 @@
|
|
|
|
|
#include "hex_print_routines.h"
|
|
|
|
|
#include "configuration_store.h"
|
|
|
|
|
#include "ultralcd.h"
|
|
|
|
|
#include "stepper.h"
|
|
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
|
#include "least_squares_fit.h"
|
|
|
|
|
|
|
|
|
|
extern float destination[XYZE];
|
|
|
|
|
extern float current_position[XYZE];
|
|
|
|
|
|
|
|
|
|
void lcd_return_to_status();
|
|
|
|
|
bool lcd_clicked();
|
|
|
|
|
void lcd_implementation_clear();
|
|
|
|
@ -317,6 +321,7 @@
|
|
|
|
|
|
|
|
|
|
void __attribute__((optimize("O0"))) gcode_G29() {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (ubl.eeprom_start < 0) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
|
|
|
|
@ -347,7 +352,6 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (code_seen('Q')) {
|
|
|
|
|
|
|
|
|
|
const int test_pattern = code_has_value() ? code_value_int() : -1;
|
|
|
|
|
if (!WITHIN(test_pattern, 0, 2)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
|
|
|
|
@ -428,15 +432,16 @@
|
|
|
|
|
//
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
|
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
|
|
|
|
if (!x_flag && !y_flag) { // use a good default location for the path
|
|
|
|
|
// The flipped > and < operators on these two comparisons is
|
|
|
|
|
// intentional. It should cause the probed points to follow a
|
|
|
|
|
// nice path on Cartesian printers. It may make sense to
|
|
|
|
|
// have Delta printers default to the center of the bed.
|
|
|
|
|
// For now, until that is decided, it can be forced with the X
|
|
|
|
|
// and Y parameters.
|
|
|
|
|
x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
|
|
|
|
|
y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
|
|
|
|
|
if (!x_flag && !y_flag) {
|
|
|
|
|
/**
|
|
|
|
|
* Use a good default location for the path.
|
|
|
|
|
* The flipped > and < operators in these comparisons is intentional.
|
|
|
|
|
* It should cause the probed points to follow a nice path on Cartesian printers.
|
|
|
|
|
* It may make sense to have Delta printers default to the center of the bed.
|
|
|
|
|
* Until that is decided, this can be forced with the X and Y parameters.
|
|
|
|
|
*/
|
|
|
|
|
x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? UBL_MESH_MAX_X : UBL_MESH_MIN_X;
|
|
|
|
|
y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? UBL_MESH_MAX_Y : UBL_MESH_MIN_Y;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (code_seen('C')) {
|
|
|
|
@ -455,16 +460,17 @@
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('O') || code_seen('M'));
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("G29 P2 finished");
|
|
|
|
|
|
|
|
|
|
} break;
|
|
|
|
|
|
|
|
|
|
case 3: {
|
|
|
|
|
//
|
|
|
|
|
// Populate invalid Mesh areas. Two choices are available to the user. The user can
|
|
|
|
|
// specify the constant to be used with a C # paramter. Or the user can allow the G29 P3 command to
|
|
|
|
|
// apply a 'reasonable' constant to the invalid mesh point. Some caution and scrutiny should be used
|
|
|
|
|
// on either of these paths!
|
|
|
|
|
//
|
|
|
|
|
/**
|
|
|
|
|
* Populate invalid mesh areas. Proceed with caution.
|
|
|
|
|
* Two choices are available:
|
|
|
|
|
* - Specify a constant with the 'C' parameter.
|
|
|
|
|
* - Allow 'G29 P3' to choose a 'reasonable' constant.
|
|
|
|
|
*/
|
|
|
|
|
if (c_flag) {
|
|
|
|
|
while (repetition_cnt--) {
|
|
|
|
|
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
|
|
|
|
@ -472,10 +478,11 @@
|
|
|
|
|
ubl.z_values[location.x_index][location.y_index] = ubl_constant;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
} else // The user wants to do a 'Smart' fill where we use the surrounding known
|
|
|
|
|
smart_fill_mesh(); // values to provide a good guess of what the unprobed mesh point should be
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
|
|
|
|
|
|
|
|
|
|
} break;
|
|
|
|
|
|
|
|
|
|
case 4:
|
|
|
|
|
//
|
|
|
|
@ -483,55 +490,19 @@
|
|
|
|
|
//
|
|
|
|
|
fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
|
|
|
|
|
break;
|
|
|
|
|
case 5:
|
|
|
|
|
ubl.find_mean_mesh_height();
|
|
|
|
|
break;
|
|
|
|
|
case 6:
|
|
|
|
|
ubl.shift_mesh_height();
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case 10:
|
|
|
|
|
// [DEBUG] Pay no attention to this stuff. It can be removed soon.
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
|
while (!ubl_lcd_clicked()) {
|
|
|
|
|
safe_delay(250);
|
|
|
|
|
if (ubl.encoder_diff) {
|
|
|
|
|
SERIAL_ECHOLN((int)ubl.encoder_diff);
|
|
|
|
|
ubl.encoder_diff = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
|
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
|
break;
|
|
|
|
|
case 5: ubl.find_mean_mesh_height(); break;
|
|
|
|
|
|
|
|
|
|
case 11:
|
|
|
|
|
// [DEBUG] wait_for_user code. Pay no attention to this stuff. It can be removed soon.
|
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
|
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
|
wait_for_user = true;
|
|
|
|
|
while (wait_for_user) {
|
|
|
|
|
safe_delay(250);
|
|
|
|
|
if (ubl.encoder_diff) {
|
|
|
|
|
SERIAL_ECHOLN((int)ubl.encoder_diff);
|
|
|
|
|
ubl.encoder_diff = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
|
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
|
break;
|
|
|
|
|
case 6: ubl.shift_mesh_height(); break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (code_seen('T')) {
|
|
|
|
|
|
|
|
|
|
float z1 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
|
|
|
|
|
z2 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
|
|
|
|
|
z3 = probe_pt( LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
|
|
|
|
|
float z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level),
|
|
|
|
|
z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level),
|
|
|
|
|
z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
|
|
|
|
|
|
|
|
|
|
// We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
|
|
|
|
|
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
|
|
|
|
@ -541,7 +512,7 @@
|
|
|
|
|
z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
|
|
|
|
|
z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
|
|
|
|
|
|
|
|
|
|
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
|
|
|
|
|
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
|
|
|
|
|
ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
|
|
|
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
|
|
|
}
|
|
|
|
@ -600,8 +571,8 @@
|
|
|
|
|
SERIAL_ECHOPAIR(" J ", y);
|
|
|
|
|
SERIAL_ECHOPGM(" Z ");
|
|
|
|
|
SERIAL_ECHO_F(ubl.z_values[x][y], 6);
|
|
|
|
|
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[x]))));
|
|
|
|
|
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[y]))));
|
|
|
|
|
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
|
|
|
|
|
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
@ -686,44 +657,39 @@
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void unified_bed_leveling::find_mean_mesh_height() {
|
|
|
|
|
uint8_t x, y;
|
|
|
|
|
int n;
|
|
|
|
|
float sum, sum_of_diff_squared, sigma, difference, mean;
|
|
|
|
|
|
|
|
|
|
sum = sum_of_diff_squared = 0.0;
|
|
|
|
|
n = 0;
|
|
|
|
|
for (x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
|
for (y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
|
float sum = 0.0;
|
|
|
|
|
int n = 0;
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
|
if (!isnan(ubl.z_values[x][y])) {
|
|
|
|
|
sum += ubl.z_values[x][y];
|
|
|
|
|
n++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mean = sum / n;
|
|
|
|
|
const float mean = sum / n;
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// Now do the sumation of the squares of difference from mean
|
|
|
|
|
//
|
|
|
|
|
for (x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
|
for (y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
|
if (!isnan(ubl.z_values[x][y])) {
|
|
|
|
|
difference = (ubl.z_values[x][y] - mean);
|
|
|
|
|
sum_of_diff_squared += difference * difference;
|
|
|
|
|
}
|
|
|
|
|
float sum_of_diff_squared = 0.0;
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
|
if (!isnan(ubl.z_values[x][y]))
|
|
|
|
|
sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOLNPAIR("# of samples: ", n);
|
|
|
|
|
SERIAL_ECHOPGM("Mean Mesh Height: ");
|
|
|
|
|
SERIAL_ECHO_F(mean, 6);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
sigma = sqrt(sum_of_diff_squared / (n + 1));
|
|
|
|
|
const float sigma = sqrt(sum_of_diff_squared / (n + 1));
|
|
|
|
|
SERIAL_ECHOPGM("Standard Deviation: ");
|
|
|
|
|
SERIAL_ECHO_F(sigma, 6);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
|
|
|
|
|
if (c_flag)
|
|
|
|
|
for (x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
|
for (y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
|
|
|
if (!isnan(ubl.z_values[x][y]))
|
|
|
|
|
ubl.z_values[x][y] -= mean + ubl_constant;
|
|
|
|
|
}
|
|
|
|
@ -761,8 +727,8 @@
|
|
|
|
|
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, do_furthest);
|
|
|
|
|
if (location.x_index >= 0 && location.y_index >= 0) {
|
|
|
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
|
|
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
|
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
|
if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
|
|
|
|
@ -785,13 +751,12 @@
|
|
|
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
|
|
|
|
|
|
|
|
do_blocking_move_to_xy(
|
|
|
|
|
constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS),
|
|
|
|
|
constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS)
|
|
|
|
|
constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
|
|
|
|
|
constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
|
|
|
|
|
float d, t, inv_z;
|
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
|
|
matrix_3x3 rotation;
|
|
|
|
@ -812,36 +777,36 @@
|
|
|
|
|
* However, we don't know its direction. We need it to point up. So if
|
|
|
|
|
* Z is negative, we need to invert the sign of all components of the vector
|
|
|
|
|
*/
|
|
|
|
|
if ( normal.z < 0.0 ) {
|
|
|
|
|
if (normal.z < 0.0) {
|
|
|
|
|
normal.x = -normal.x;
|
|
|
|
|
normal.y = -normal.y;
|
|
|
|
|
normal.z = -normal.z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rotation = matrix_3x3::create_look_at( vector_3( normal.x, normal.y, 1));
|
|
|
|
|
rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
|
|
|
|
|
|
|
|
|
|
if (g29_verbose_level>2) {
|
|
|
|
|
if (g29_verbose_level > 2) {
|
|
|
|
|
SERIAL_ECHOPGM("bed plane normal = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.x, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.y, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.z, 7);
|
|
|
|
|
SERIAL_ECHOPGM("]\n");
|
|
|
|
|
rotation.debug("rotation matrix:");
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
|
|
|
SERIAL_ECHOLNPGM("]");
|
|
|
|
|
rotation.debug(PSTR("rotation matrix:"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// All of 3 of these points should give us the same d constant
|
|
|
|
|
//
|
|
|
|
|
|
|
|
|
|
t = normal.x * UBL_PROBE_PT_1_X + normal.y * UBL_PROBE_PT_1_Y;
|
|
|
|
|
float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
|
|
|
|
|
d = t + normal.z * z1;
|
|
|
|
|
|
|
|
|
|
if (g29_verbose_level>2) {
|
|
|
|
|
SERIAL_ECHOPGM("D constant: ");
|
|
|
|
|
SERIAL_PROTOCOL_F( d, 7);
|
|
|
|
|
SERIAL_ECHOPGM(" \n");
|
|
|
|
|
SERIAL_PROTOCOL_F(d, 7);
|
|
|
|
|
SERIAL_ECHOLNPGM(" ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
@ -849,12 +814,12 @@
|
|
|
|
|
SERIAL_ECHOPGM("d from 1st point: ");
|
|
|
|
|
SERIAL_ECHO_F(d, 6);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
t = normal.x * UBL_PROBE_PT_2_X + normal.y * UBL_PROBE_PT_2_Y;
|
|
|
|
|
t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
|
|
|
|
|
d = t + normal.z * z2;
|
|
|
|
|
SERIAL_ECHOPGM("d from 2nd point: ");
|
|
|
|
|
SERIAL_ECHO_F(d, 6);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
t = normal.x * UBL_PROBE_PT_3_X + normal.y * UBL_PROBE_PT_3_Y;
|
|
|
|
|
t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
|
|
|
|
|
d = t + normal.z * z3;
|
|
|
|
|
SERIAL_ECHOPGM("d from 3rd point: ");
|
|
|
|
|
SERIAL_ECHO_F(d, 6);
|
|
|
|
@ -862,20 +827,19 @@
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
|
float x_tmp, y_tmp, z_tmp;
|
|
|
|
|
x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]);
|
|
|
|
|
y_tmp = pgm_read_float(ubl.mesh_index_to_ypos[j]);
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
|
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
|
|
|
|
|
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
|
|
|
|
|
z_tmp = ubl.z_values[i][j];
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPGM("before rotation = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM("] ---> ");
|
|
|
|
|
safe_delay(20);
|
|
|
|
|
}
|
|
|
|
@ -884,22 +848,25 @@
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPGM("after rotation = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM("]\n");
|
|
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
|
|
|
SERIAL_ECHOLNPGM("]");
|
|
|
|
|
safe_delay(55);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
ubl.z_values[i][j] += z_tmp - d;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float use_encoder_wheel_to_measure_point() {
|
|
|
|
|
|
|
|
|
|
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
|
|
|
|
|
delay(50); // debounce
|
|
|
|
|
|
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
|
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
|
idle();
|
|
|
|
@ -912,21 +879,29 @@
|
|
|
|
|
return current_position[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float measure_business_card_thickness(const float &in_height) {
|
|
|
|
|
static void say_and_take_a_measurement() {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM(" and take a measurement.");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float measure_business_card_thickness(const float &in_height) {
|
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
|
ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
|
|
|
|
ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
|
|
|
|
|
do_blocking_move_to_z(in_height);
|
|
|
|
|
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
|
|
|
|
|
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
|
|
|
|
|
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
|
|
|
|
|
//, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
|
|
|
|
|
|
|
|
|
|
stepper.synchronize();
|
|
|
|
|
SERIAL_PROTOCOLPGM("Place shim under nozzle");
|
|
|
|
|
say_and_take_a_measurement();
|
|
|
|
|
|
|
|
|
|
const float z1 = use_encoder_wheel_to_measure_point();
|
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
|
stepper.synchronize();
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Remove shim");
|
|
|
|
|
say_and_take_a_measurement();
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
|
|
|
|
|
const float z2 = use_encoder_wheel_to_measure_point();
|
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
|
|
|
|
|
|
|
|
@ -935,6 +910,8 @@
|
|
|
|
|
SERIAL_PROTOCOL_F(abs(z1 - z2), 6);
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("mm thick.");
|
|
|
|
|
}
|
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
|
|
|
|
|
|
ubl.restore_ubl_active_state_and_leave();
|
|
|
|
|
return abs(z1 - z2);
|
|
|
|
|
}
|
|
|
|
@ -953,11 +930,11 @@
|
|
|
|
|
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue;
|
|
|
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
|
|
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
|
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
|
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
|
|
|
|
|
if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) {
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
|
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
@ -984,6 +961,8 @@
|
|
|
|
|
|
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
|
|
|
|
|
|
|
|
|
|
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
|
|
|
|
|
delay(50); // debounce
|
|
|
|
|
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
|
|
|
|
idle();
|
|
|
|
|
if (ubl.encoder_diff) {
|
|
|
|
@ -1024,17 +1003,28 @@
|
|
|
|
|
do_blocking_move_to_xy(lx, ly);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void say_ubl_name() {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void report_ubl_state() {
|
|
|
|
|
say_ubl_name();
|
|
|
|
|
SERIAL_PROTOCOLPGM("System ");
|
|
|
|
|
if (!ubl.state.active) SERIAL_PROTOCOLPGM("de");
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("activated.\n");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool g29_parameter_parsing() {
|
|
|
|
|
bool err_flag = false;
|
|
|
|
|
|
|
|
|
|
LCD_MESSAGEPGM("Doing G29 UBL!");
|
|
|
|
|
lcd_quick_feedback();
|
|
|
|
|
|
|
|
|
|
ubl_constant = 0.0;
|
|
|
|
|
repetition_cnt = 0;
|
|
|
|
|
lcd_quick_feedback();
|
|
|
|
|
|
|
|
|
|
x_flag = code_seen('X') && code_has_value();
|
|
|
|
|
x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
|
|
|
|
|
|
|
|
|
|
y_flag = code_seen('Y') && code_has_value();
|
|
|
|
|
y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
|
|
|
|
|
|
|
|
|
@ -1042,14 +1032,14 @@
|
|
|
|
|
if (repeat_flag) {
|
|
|
|
|
repetition_cnt = code_has_value() ? code_value_int() : (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y);
|
|
|
|
|
if (repetition_cnt < 1) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
g29_verbose_level = code_seen('V') ? code_value_int() : 0;
|
|
|
|
|
if (!WITHIN(g29_verbose_level, 0, 4)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4)\n");
|
|
|
|
|
err_flag = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -1066,44 +1056,47 @@
|
|
|
|
|
err_flag = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
|
|
|
|
|
if (!WITHIN(RAW_X_POSITION(x_pos), UBL_MESH_MIN_X, UBL_MESH_MAX_X)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
|
|
|
|
|
err_flag = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
|
|
|
|
|
if (!WITHIN(RAW_Y_POSITION(y_pos), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
|
|
|
|
|
err_flag = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (err_flag) return UBL_ERR;
|
|
|
|
|
|
|
|
|
|
if (code_seen('A')) { // Activate the Unified Bed Leveling System
|
|
|
|
|
// Activate or deactivate UBL
|
|
|
|
|
if (code_seen('A')) {
|
|
|
|
|
if (code_seen('D')) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
|
ubl.state.active = 1;
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
|
|
|
|
|
report_ubl_state();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
c_flag = code_seen('C');
|
|
|
|
|
if (c_flag)
|
|
|
|
|
ubl_constant = code_value_float();
|
|
|
|
|
|
|
|
|
|
if (code_seen('D')) { // Disable the Unified Bed Leveling System
|
|
|
|
|
else if (code_seen('D')) {
|
|
|
|
|
ubl.state.active = 0;
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
|
|
|
|
|
report_ubl_state();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Set global 'C' flag and its value
|
|
|
|
|
if ((c_flag = code_seen('C')))
|
|
|
|
|
ubl_constant = code_value_float();
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
|
if (code_seen('F') && code_has_value()) {
|
|
|
|
|
const float fh = code_value_float();
|
|
|
|
|
if (!WITHIN(fh, 0.0, 100.0)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
|
|
|
|
|
return UBL_ERR;
|
|
|
|
|
}
|
|
|
|
|
set_z_fade_height(fh);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
|
|
|
|
|
if (!WITHIN(map_type, 0, 1)) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
|
|
|
|
@ -1125,7 +1118,7 @@
|
|
|
|
|
* This function goes away after G29 debug is complete. But for right now, it is a handy
|
|
|
|
|
* routine to dump binary data structures.
|
|
|
|
|
*/
|
|
|
|
|
/*
|
|
|
|
|
/*
|
|
|
|
|
void dump(char * const str, const float &f) {
|
|
|
|
|
char *ptr;
|
|
|
|
|
|
|
|
|
@ -1143,7 +1136,7 @@
|
|
|
|
|
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
*/
|
|
|
|
|
//*/
|
|
|
|
|
|
|
|
|
|
static int ubl_state_at_invocation = 0,
|
|
|
|
|
ubl_state_recursion_chk = 0;
|
|
|
|
@ -1170,7 +1163,6 @@
|
|
|
|
|
ubl.state.active = ubl_state_at_invocation;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
|
|
|
|
|
* good to have the extra information. Soon... we prune this to just a few items
|
|
|
|
@ -1178,7 +1170,8 @@
|
|
|
|
|
void g29_what_command() {
|
|
|
|
|
const uint16_t k = E2END - ubl.eeprom_start;
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version " UBL_VERSION " ");
|
|
|
|
|
say_ubl_name();
|
|
|
|
|
SERIAL_PROTOCOLPGM("System Version " UBL_VERSION " ");
|
|
|
|
|
if (ubl.state.active)
|
|
|
|
|
SERIAL_PROTOCOLCHAR('A');
|
|
|
|
|
else
|
|
|
|
@ -1209,11 +1202,11 @@
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
safe_delay(25);
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=0x", hex_word(ubl.eeprom_start));
|
|
|
|
|
SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", hex_address((void*)ubl.eeprom_start));
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&(ubl.mesh_index_to_xpos[i]))), 1);
|
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[i])), 1);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
safe_delay(50);
|
|
|
|
|
}
|
|
|
|
@ -1221,7 +1214,7 @@
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
|
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&(ubl.mesh_index_to_ypos[i]))), 1);
|
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[i])), 1);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
|
|
|
safe_delay(50);
|
|
|
|
|
}
|
|
|
|
@ -1275,8 +1268,10 @@
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
safe_delay(50);
|
|
|
|
|
|
|
|
|
|
if (!ubl.sanity_check())
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
|
|
|
|
|
if (!ubl.sanity_check()) {
|
|
|
|
|
say_ubl_name();
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("sanity checks passed.");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -1336,18 +1331,18 @@
|
|
|
|
|
ubl.z_values[x][y] -= tmp_z_values[x][y];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
|
|
|
|
|
float distance, closest = far_flag ? -99999.99 : 99999.99;
|
|
|
|
|
mesh_index_pair return_val;
|
|
|
|
|
|
|
|
|
|
return_val.x_index = return_val.y_index = -1;
|
|
|
|
|
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
|
|
|
|
|
mesh_index_pair out_mesh;
|
|
|
|
|
out_mesh.x_index = out_mesh.y_index = -1;
|
|
|
|
|
|
|
|
|
|
const float current_x = current_position[X_AXIS],
|
|
|
|
|
current_y = current_position[Y_AXIS];
|
|
|
|
|
|
|
|
|
|
// Get our reference position. Either the nozzle or probe location.
|
|
|
|
|
const float px = lx - (probe_as_reference==USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
|
|
|
|
|
py = ly - (probe_as_reference==USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
|
|
|
|
|
const float px = lx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
|
|
|
|
|
py = ly - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
|
|
|
|
|
|
|
|
|
|
float closest = far_flag ? -99999.99 : 99999.99;
|
|
|
|
|
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
@ -1359,13 +1354,13 @@
|
|
|
|
|
|
|
|
|
|
// We only get here if we found a Mesh Point of the specified type
|
|
|
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[i])), // Check if we can probe this mesh location
|
|
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
|
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // Check if we can probe this mesh location
|
|
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
|
|
|
|
|
|
|
|
|
|
// If using the probe as the reference there are some unreachable locations.
|
|
|
|
|
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
|
|
|
|
|
|
|
|
|
if (probe_as_reference==USE_PROBE_AS_REFERENCE &&
|
|
|
|
|
if (probe_as_reference == USE_PROBE_AS_REFERENCE &&
|
|
|
|
|
(!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
|
|
|
|
|
) continue;
|
|
|
|
|
|
|
|
|
@ -1375,30 +1370,38 @@
|
|
|
|
|
const float mx = LOGICAL_X_POSITION(rawx), // Check if we can probe this mesh location
|
|
|
|
|
my = LOGICAL_Y_POSITION(rawy);
|
|
|
|
|
|
|
|
|
|
distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
|
|
|
|
|
float distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1;
|
|
|
|
|
|
|
|
|
|
if (far_flag) { // If doing the far_flag action, we want to be as far as possible
|
|
|
|
|
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) { // from the starting point and from any other probed points. We
|
|
|
|
|
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) { // want the next point spread out and filling in any blank spaces
|
|
|
|
|
if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
|
|
|
|
|
distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
|
|
|
|
|
/**
|
|
|
|
|
* If doing the far_flag action, we want to be as far as possible
|
|
|
|
|
* from the starting point and from any other probed points. We
|
|
|
|
|
* want the next point spread out and filling in any blank spaces
|
|
|
|
|
* in the mesh. So we add in some of the distance to every probed
|
|
|
|
|
* point we can find.
|
|
|
|
|
*/
|
|
|
|
|
if (far_flag) {
|
|
|
|
|
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
|
|
|
|
|
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
|
|
|
|
|
if (!isnan(ubl.z_values[k][l])) {
|
|
|
|
|
distance += sq(i - k) * (MESH_X_DIST) * .05
|
|
|
|
|
+ sq(j - l) * (MESH_Y_DIST) * .05;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (far_flag == (distance > closest) && distance != closest) { // if far_flag, look for farthest point
|
|
|
|
|
// if far_flag, look for farthest point
|
|
|
|
|
if (far_flag == (distance > closest) && distance != closest) {
|
|
|
|
|
closest = distance; // We found a closer/farther location with
|
|
|
|
|
return_val.x_index = i; // the specified type of mesh value.
|
|
|
|
|
return_val.y_index = j;
|
|
|
|
|
return_val.distance = closest;
|
|
|
|
|
out_mesh.x_index = i; // the specified type of mesh value.
|
|
|
|
|
out_mesh.y_index = j;
|
|
|
|
|
out_mesh.distance = closest;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} // for j
|
|
|
|
|
} // for i
|
|
|
|
|
|
|
|
|
|
return return_val;
|
|
|
|
|
return out_mesh;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
|
|
|
|
@ -1418,29 +1421,31 @@
|
|
|
|
|
do_blocking_move_to_xy(lx, ly);
|
|
|
|
|
do {
|
|
|
|
|
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
|
|
|
|
|
// It doesn't matter if the probe can not reach this
|
|
|
|
|
// It doesn't matter if the probe can't reach this
|
|
|
|
|
// location. This is a manual edit of the Mesh Point.
|
|
|
|
|
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
|
|
|
|
|
|
|
|
|
|
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
|
|
|
|
// different location the next time through the loop
|
|
|
|
|
|
|
|
|
|
const float rawx = pgm_read_float(&(ubl.mesh_index_to_xpos[location.x_index])),
|
|
|
|
|
rawy = pgm_read_float(&(ubl.mesh_index_to_ypos[location.y_index]));
|
|
|
|
|
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
|
|
|
|
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
|
|
|
|
|
|
|
|
|
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
|
|
|
|
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
|
|
|
|
|
if (!WITHIN(rawx, UBL_MESH_MIN_X, UBL_MESH_MAX_X) || !WITHIN(rawy, UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)) { // In theory, we don't need this check.
|
|
|
|
|
SERIAL_ERROR_START;
|
|
|
|
|
SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
|
|
|
|
|
ubl.has_control_of_lcd_panel = false;
|
|
|
|
|
goto FINE_TUNE_EXIT;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float new_z = ubl.z_values[location.x_index][location.y_index];
|
|
|
|
|
|
|
|
|
|
if (!isnan(new_z)) { //can't fine tune a point that hasn't been probed
|
|
|
|
|
|
|
|
|
|
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
|
|
|
|
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
|
|
|
|
|
|
|
|
|
|
float new_z = ubl.z_values[location.x_index][location.y_index];
|
|
|
|
|
|
|
|
|
|
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
|
|
|
|
|
new_z = float(round_off) / 1000.0;
|
|
|
|
|
|
|
|
|
@ -1450,6 +1455,7 @@
|
|
|
|
|
if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
|
|
|
|
|
|
|
|
|
|
lcd_implementation_clear();
|
|
|
|
|
|
|
|
|
|
lcd_mesh_edit_setup(new_z);
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
@ -1459,9 +1465,11 @@
|
|
|
|
|
|
|
|
|
|
lcd_return_to_status();
|
|
|
|
|
|
|
|
|
|
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
|
|
|
|
// There is a race condition for the Encoder Wheel getting clicked.
|
|
|
|
|
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
|
|
|
|
// or here.
|
|
|
|
|
ubl.has_control_of_lcd_panel = true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const millis_t nxt = millis() + 1500UL;
|
|
|
|
|
while (ubl_lcd_clicked()) { // debounce and watch for abort
|
|
|
|
@ -1501,200 +1509,165 @@
|
|
|
|
|
SERIAL_ECHOLNPGM("Done Editing Mesh");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// The routine provides the 'Smart Fill' capability. It scans from the
|
|
|
|
|
// outward edges of the mesh towards the center. If it finds an invalid
|
|
|
|
|
// location, it uses the next two points (assumming they are valid) to
|
|
|
|
|
// calculate a 'reasonable' value for the unprobed mesh point.
|
|
|
|
|
//
|
|
|
|
|
void smart_fill_mesh() {
|
|
|
|
|
float f, diff;
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Bottom of the mesh looking up
|
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y-2; y++) {
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) {
|
|
|
|
|
if (isnan(ubl.z_values[x][y+1])) // we only deal with the first NAN next to a block of
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
if (isnan(ubl.z_values[x][y+2]))
|
|
|
|
|
continue;
|
|
|
|
|
if (ubl.z_values[x][y+1] < ubl.z_values[x][y+2]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
|
|
|
|
|
else {
|
|
|
|
|
diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2]; // The bed is angled up near this edge. So we will use the closest
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y+1] + diff; // height and add in the difference between that and the next point
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Top of the mesh looking down
|
|
|
|
|
for (uint8_t y=GRID_MAX_POINTS_Y-1; y>=1; y--) {
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) {
|
|
|
|
|
if (isnan(ubl.z_values[x][y-1])) // we only deal with the first NAN next to a block of
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
if (isnan(ubl.z_values[x][y-2]))
|
|
|
|
|
continue;
|
|
|
|
|
if (ubl.z_values[x][y-1] < ubl.z_values[x][y-2]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y-1]; // use the closest value, which is probably a little too high
|
|
|
|
|
else {
|
|
|
|
|
diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2]; // The bed is angled up near this edge. So we will use the closest
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y-1] + diff; // height and add in the difference between that and the next point
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
|
|
|
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X-2; x++) { // Left side of the mesh looking right
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) {
|
|
|
|
|
if (isnan(ubl.z_values[x+1][y])) // we only deal with the first NAN next to a block of
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
if (isnan(ubl.z_values[x+2][y]))
|
|
|
|
|
continue;
|
|
|
|
|
if (ubl.z_values[x+1][y] < ubl.z_values[x+2][y]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
|
|
|
|
|
/**
|
|
|
|
|
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.
|
|
|
|
|
* If an invalid location is found, use the next two points (if valid) to
|
|
|
|
|
* calculate a 'reasonable' value for the unprobed mesh point.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
|
|
|
|
|
const int8_t x1 = x + xdir, x2 = x1 + xdir,
|
|
|
|
|
y1 = y + ydir, y2 = y1 + ydir;
|
|
|
|
|
// A NAN next to a pair of real values?
|
|
|
|
|
if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
|
|
|
|
|
if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
|
|
|
|
|
else {
|
|
|
|
|
diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y]; // The bed is angled up near this edge. So we will use the closest
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x+1][y] + diff; // height and add in the difference between that and the next point
|
|
|
|
|
const float diff = ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x1][y1] + diff; // Use closest plus difference
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
|
|
|
|
|
|
|
|
|
|
void smart_fill_loop(const smart_fill_info &f) {
|
|
|
|
|
if (f.yfirst) {
|
|
|
|
|
const int8_t dir = f.ex > f.sx ? 1 : -1;
|
|
|
|
|
for (uint8_t y = f.sy; y != f.ey; ++y)
|
|
|
|
|
for (uint8_t x = f.sx; x != f.ex; x += dir)
|
|
|
|
|
if (smart_fill_one(x, y, dir, 0)) break;
|
|
|
|
|
}
|
|
|
|
|
for (uint8_t y=0; y < GRID_MAX_POINTS_Y; y++) {
|
|
|
|
|
for (uint8_t x=GRID_MAX_POINTS_X-1; x>=1; x--) { // Right side of the mesh looking left
|
|
|
|
|
if (isnan(ubl.z_values[x][y])) {
|
|
|
|
|
if (isnan(ubl.z_values[x-1][y])) // we only deal with the first NAN next to a block of
|
|
|
|
|
continue; // good numbers. we want 2 good numbers to extrapolate off of.
|
|
|
|
|
if (isnan(ubl.z_values[x-2][y]))
|
|
|
|
|
continue;
|
|
|
|
|
if (ubl.z_values[x-1][y] < ubl.z_values[x-2][y]) // The bed is angled down near this edge. So to be safe, we
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x-1][y]; // use the closest value, which is probably a little too high
|
|
|
|
|
else {
|
|
|
|
|
diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y]; // The bed is angled up near this edge. So we will use the closest
|
|
|
|
|
ubl.z_values[x][y] = ubl.z_values[x-1][y] + diff; // height and add in the difference between that and the next point
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
const int8_t dir = f.ey > f.sy ? 1 : -1;
|
|
|
|
|
for (uint8_t x = f.sx; x != f.ex; ++x)
|
|
|
|
|
for (uint8_t y = f.sy; y != f.ey; y += dir)
|
|
|
|
|
if (smart_fill_one(x, y, 0, dir)) break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void smart_fill_mesh() {
|
|
|
|
|
const smart_fill_info info[] = {
|
|
|
|
|
{ 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
|
|
|
|
|
{ 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
|
|
|
|
|
{ 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
|
|
|
|
|
{ GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } // Right side of the mesh looking left
|
|
|
|
|
};
|
|
|
|
|
for (uint8_t i = 0; i < COUNT(info); ++i) smart_fill_loop(info[i]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
|
|
|
|
|
int8_t i, j ,k, xCount, yCount, xi, yi; // counter variables
|
|
|
|
|
int8_t ix, iy, zig_zag=0, status;
|
|
|
|
|
|
|
|
|
|
float dx, dy, x, y, measured_z, inv_z;
|
|
|
|
|
struct linear_fit_data lsf_results;
|
|
|
|
|
matrix_3x3 rotation;
|
|
|
|
|
vector_3 normal;
|
|
|
|
|
|
|
|
|
|
int16_t x_min = max((MIN_PROBE_X),(UBL_MESH_MIN_X)),
|
|
|
|
|
x_max = min((MAX_PROBE_X),(UBL_MESH_MAX_X)),
|
|
|
|
|
y_min = max((MIN_PROBE_Y),(UBL_MESH_MIN_Y)),
|
|
|
|
|
y_max = min((MAX_PROBE_Y),(UBL_MESH_MAX_Y));
|
|
|
|
|
constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
|
|
|
|
|
x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
|
|
|
|
|
y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
|
|
|
|
|
y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
|
|
|
|
|
|
|
|
|
|
dx = ((float)(x_max-x_min)) / (grid_size-1.0);
|
|
|
|
|
dy = ((float)(y_max-y_min)) / (grid_size-1.0);
|
|
|
|
|
const float dx = float(x_max - x_min) / (grid_size - 1.0),
|
|
|
|
|
dy = float(y_max - y_min) / (grid_size - 1.0);
|
|
|
|
|
|
|
|
|
|
struct linear_fit_data lsf_results;
|
|
|
|
|
incremental_LSF_reset(&lsf_results);
|
|
|
|
|
for(ix=0; ix<grid_size; ix++) {
|
|
|
|
|
x = ((float)x_min) + ix*dx;
|
|
|
|
|
for(iy=0; iy<grid_size; iy++) {
|
|
|
|
|
if (zig_zag)
|
|
|
|
|
y = ((float)y_min) + (grid_size-iy-1)*dy;
|
|
|
|
|
else
|
|
|
|
|
y = ((float)y_min) + iy*dy;
|
|
|
|
|
measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
|
|
|
|
|
|
|
|
|
|
bool zig_zag = false;
|
|
|
|
|
for (uint8_t ix = 0; ix < grid_size; ix++) {
|
|
|
|
|
const float x = float(x_min) + ix * dx;
|
|
|
|
|
for (int8_t iy = 0; iy < grid_size; iy++) {
|
|
|
|
|
const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
|
|
|
|
|
float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level);
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPGM("(");
|
|
|
|
|
SERIAL_PROTOCOL_F( x, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( y, 7);
|
|
|
|
|
SERIAL_CHAR('(');
|
|
|
|
|
SERIAL_PROTOCOL_F(x, 7);
|
|
|
|
|
SERIAL_CHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(y, 7);
|
|
|
|
|
SERIAL_ECHOPGM(") logical: ");
|
|
|
|
|
SERIAL_ECHOPGM("(");
|
|
|
|
|
SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(x), 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( LOGICAL_X_POSITION(y), 7);
|
|
|
|
|
SERIAL_CHAR('(');
|
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
|
|
|
|
|
SERIAL_CHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
|
|
|
|
|
SERIAL_ECHOPGM(") measured: ");
|
|
|
|
|
SERIAL_PROTOCOL_F( measured_z, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(measured_z, 7);
|
|
|
|
|
SERIAL_ECHOPGM(" correction: ");
|
|
|
|
|
SERIAL_PROTOCOL_F( ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
measured_z -= ubl.get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPGM(" final >>>---> ");
|
|
|
|
|
SERIAL_PROTOCOL_F( measured_z, 7);
|
|
|
|
|
SERIAL_ECHOPGM("\n");
|
|
|
|
|
SERIAL_PROTOCOL_F(measured_z, 7);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
incremental_LSF(&lsf_results, x, y, measured_z);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
zig_zag = !zig_zag;
|
|
|
|
|
zig_zag ^= true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
status = finish_incremental_LSF(&lsf_results);
|
|
|
|
|
if (g29_verbose_level>3) {
|
|
|
|
|
const int status = finish_incremental_LSF(&lsf_results);
|
|
|
|
|
|
|
|
|
|
if (g29_verbose_level > 3) {
|
|
|
|
|
SERIAL_ECHOPGM("LSF Results A=");
|
|
|
|
|
SERIAL_PROTOCOL_F( lsf_results.A, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(lsf_results.A, 7);
|
|
|
|
|
SERIAL_ECHOPGM(" B=");
|
|
|
|
|
SERIAL_PROTOCOL_F( lsf_results.B, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(lsf_results.B, 7);
|
|
|
|
|
SERIAL_ECHOPGM(" D=");
|
|
|
|
|
SERIAL_PROTOCOL_F( lsf_results.D, 7);
|
|
|
|
|
SERIAL_CHAR('\n');
|
|
|
|
|
SERIAL_PROTOCOL_F(lsf_results.D, 7);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
normal = vector_3( lsf_results.A, lsf_results.B, 1.0000);
|
|
|
|
|
normal = normal.get_normal();
|
|
|
|
|
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
|
|
|
|
|
|
|
|
|
|
if (g29_verbose_level>2) {
|
|
|
|
|
if (g29_verbose_level > 2) {
|
|
|
|
|
SERIAL_ECHOPGM("bed plane normal = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.x, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.y, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.z, 7);
|
|
|
|
|
SERIAL_ECHOPGM("]\n");
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
|
|
|
SERIAL_ECHOLNPGM("]");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
rotation = matrix_3x3::create_look_at( vector_3( lsf_results.A, lsf_results.B, 1));
|
|
|
|
|
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
|
|
|
|
|
|
|
|
|
|
for (i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
|
float x_tmp, y_tmp, z_tmp;
|
|
|
|
|
x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i]));
|
|
|
|
|
y_tmp = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
|
|
|
|
|
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
|
|
|
|
|
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
|
|
|
|
|
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
|
|
|
|
|
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
|
|
|
|
|
z_tmp = ubl.z_values[i][j];
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPGM("before rotation = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM("] ---> ");
|
|
|
|
|
safe_delay(20);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
SERIAL_ECHOPGM("after rotation = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( x_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( y_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( z_tmp, 7);
|
|
|
|
|
SERIAL_ECHOPGM("]\n");
|
|
|
|
|
SERIAL_PROTOCOL_F(x_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(y_tmp, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(z_tmp, 7);
|
|
|
|
|
SERIAL_ECHOLNPGM("]");
|
|
|
|
|
safe_delay(55);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
ubl.z_values[i][j] += z_tmp - lsf_results.D;
|
|
|
|
@ -1703,27 +1676,26 @@
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
|
rotation.debug("rotation matrix:");
|
|
|
|
|
rotation.debug(PSTR("rotation matrix:"));
|
|
|
|
|
SERIAL_ECHOPGM("LSF Results A=");
|
|
|
|
|
SERIAL_PROTOCOL_F( lsf_results.A, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(lsf_results.A, 7);
|
|
|
|
|
SERIAL_ECHOPGM(" B=");
|
|
|
|
|
SERIAL_PROTOCOL_F( lsf_results.B, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(lsf_results.B, 7);
|
|
|
|
|
SERIAL_ECHOPGM(" D=");
|
|
|
|
|
SERIAL_PROTOCOL_F( lsf_results.D, 7);
|
|
|
|
|
SERIAL_CHAR('\n');
|
|
|
|
|
SERIAL_PROTOCOL_F(lsf_results.D, 7);
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
safe_delay(55);
|
|
|
|
|
|
|
|
|
|
SERIAL_ECHOPGM("bed plane normal = [");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.x, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.y, 7);
|
|
|
|
|
SERIAL_ECHOPGM(",");
|
|
|
|
|
SERIAL_PROTOCOL_F( normal.z, 7);
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.x, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.y, 7);
|
|
|
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
|
|
|
SERIAL_PROTOCOL_F(normal.z, 7);
|
|
|
|
|
SERIAL_ECHOPGM("]\n");
|
|
|
|
|
SERIAL_CHAR('\n');
|
|
|
|
|
SERIAL_EOL;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
|