Merge pull request #6410 from teemuatlut/LVD-Delta

Delta auto-calibration updates
master
Scott Lahteine 8 years ago committed by GitHub
commit 671a44b8aa

@ -693,43 +693,20 @@
* Delta radius/rod trimmers/angle trimmers * Delta radius/rod trimmers/angle trimmers
*/ */
#if ENABLED(DELTA) #if ENABLED(DELTA)
#ifndef DELTA_ENDSTOP_ADJ #ifndef DELTA_CALIBRATION_RADIUS
#define DELTA_ENDSTOP_ADJ { 0 } #define DELTA_CALIBRATION_RADIUS DELTA_PRINTABLE_RADIUS - 10
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_1
#define DELTA_RADIUS_TRIM_TOWER_1 0.0
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_2
#define DELTA_RADIUS_TRIM_TOWER_2 0.0
#endif
#ifndef DELTA_RADIUS_TRIM_TOWER_3
#define DELTA_RADIUS_TRIM_TOWER_3 0.0
#endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_1
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#endif #endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_2 #ifndef DELTA_ENDSTOP_ADJ
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 #define DELTA_ENDSTOP_ADJ { 0, 0, 0 }
#endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER_3
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0
#endif
#ifndef DELTA_TOWER_ANGLE_TRIM_1
#define DELTA_TOWER_ANGLE_TRIM_1 0.0
#endif
#ifndef DELTA_TOWER_ANGLE_TRIM_2
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#endif
#ifndef DELTA_TOWER_ANGLE_TRIM_3
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif
#if ENABLED(DELTA_AUTO_CALIBRATION) #ifndef DELTA_TOWER_ANGLE_TRIM
#ifndef H_FACTOR #define DELTA_TOWER_ANGLE_TRIM {0, 0, 0}
#define H_FACTOR 1.00
#endif #endif
#ifndef R_FACTOR #ifndef DELTA_RADIUS_TRIM_TOWER
#define R_FACTOR -2.25 #define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#endif #endif
#ifndef DELTA_DIAGONAL_ROD_TRIM_TOWER
#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#endif #endif
#endif #endif

@ -302,9 +302,9 @@ float code_value_temp_diff();
extern float endstop_adj[ABC], extern float endstop_adj[ABC],
delta_radius, delta_radius,
delta_diagonal_rod, delta_diagonal_rod,
delta_calibration_radius,
delta_segments_per_second, delta_segments_per_second,
delta_diagonal_rod_trim[ABC], delta_tower_angle_trim[2],
delta_tower_angle_trim[ABC],
delta_clip_start_height; delta_clip_start_height;
void recalc_delta_settings(float radius, float diagonal_rod); void recalc_delta_settings(float radius, float diagonal_rod);
#elif IS_SCARA #elif IS_SCARA

@ -61,7 +61,7 @@
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location) * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
* G31 - Dock sled (Z_PROBE_SLED only) * G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only)
* G33 - Delta '4-point' auto calibration iteration * G33 - Delta '1-4-7-point' auto calibration : "G33 V<verbose> P<points> <A> <O> <T>" (Requires DELTA)
* G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
* G90 - Use Absolute Coordinates * G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates * G91 - Use Relative Coordinates
@ -585,10 +585,10 @@ static uint8_t target_extruder;
// These values are loaded or reset at boot time when setup() calls // These values are loaded or reset at boot time when setup() calls
// settings.load(), which calls recalc_delta_settings(). // settings.load(), which calls recalc_delta_settings().
float delta_radius, float delta_radius,
delta_tower_angle_trim[ABC], delta_tower_angle_trim[2],
delta_tower[ABC][2], delta_tower[ABC][2],
delta_diagonal_rod, delta_diagonal_rod,
delta_diagonal_rod_trim[ABC], delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC], delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second, delta_segments_per_second,
delta_clip_start_height = Z_MAX_POS; delta_clip_start_height = Z_MAX_POS;
@ -1830,6 +1830,9 @@ static void clean_up_after_endstop_or_probe_move() {
float z_dest = LOGICAL_Z_POSITION(z_raise); float z_dest = LOGICAL_Z_POSITION(z_raise);
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
#if ENABLED(DELTA)
z_dest -= home_offset[Z_AXIS];
#endif
if (z_dest > current_position[Z_AXIS]) if (z_dest > current_position[Z_AXIS])
do_blocking_move_to_z(z_dest); do_blocking_move_to_z(z_dest);
@ -1837,7 +1840,8 @@ static void clean_up_after_endstop_or_probe_move() {
#endif //HAS_BED_PROBE #endif //HAS_BED_PROBE
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
bool axis_unhomed_error(const bool x, const bool y, const bool z) { bool axis_unhomed_error(const bool x, const bool y, const bool z) {
const bool xx = x && !axis_homed[X_AXIS], const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS], yy = y && !axis_homed[Y_AXIS],
@ -1857,6 +1861,7 @@ static void clean_up_after_endstop_or_probe_move() {
} }
return false; return false;
} }
#endif #endif
#if ENABLED(Z_PROBE_SLED) #if ENABLED(Z_PROBE_SLED)
@ -2308,6 +2313,9 @@ static void clean_up_after_endstop_or_probe_move() {
// move down quickly before doing the slow probe // move down quickly before doing the slow probe
float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES); float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
if (zprobe_zoffset < 0) z -= zprobe_zoffset; if (zprobe_zoffset < 0) z -= zprobe_zoffset;
#if ENABLED(DELTA)
z -= home_offset[Z_AXIS];
#endif
if (z < current_position[Z_AXIS]) if (z < current_position[Z_AXIS])
do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
@ -5009,11 +5017,12 @@ inline void gcode_G28() {
/** /**
* G30: Do a single Z probe at the current XY * G30: Do a single Z probe at the current XY
* Usage: *
* G30 <X#> <Y#> <S#> * Parameters:
* X = Probe X position (default=current probe position) *
* Y = Probe Y position (default=current probe position) * X Probe X position (default current X)
* S = Stows the probe if 1 (default=1) * Y Probe Y position (default current Y)
* S0 Leave the probe deployed
*/ */
inline void gcode_G30() { inline void gcode_G30() {
const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
@ -5056,32 +5065,25 @@ inline void gcode_G28() {
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
/** /**
* G33: Delta '4-point' auto calibration iteration * G33 - Delta '1-4-7-point' auto calibration (Requires DELTA)
*
* Usage: G33 <Cn> <Vn>
* *
* C (default) = Calibrate endstops, height and delta radius * Usage:
* * G33 <Vn> <Pn> <A> <O> <T>
* -2, 1-4: n x n probe points, default 3 x 3 *
* * Vn = verbose level (n=0-2 default 1)
* 1: probe center * n=0 dry-run mode: setting + probe results / no calibration
* set height only - useful when z_offset is changed * n=1 settings
* 2: probe center and towers * n=2 setting + probe results
* solve one '4 point' calibration * Pn = n=-7 -> +7 : n*n probe points
* -2: probe center and opposite the towers * calibrates height ('1 point'), endstops, and delta radius ('4 points')
* solve one '4 point' calibration * and tower angles with n > 2 ('7+ points')
* 3: probe 3 center points, towers and opposite-towers * n=1 probes center / sets height only
* averages between 2 '4 point' calibrations * n=2 probes center and towers / sets height, endstops and delta radius
* 4: probe 4 center points, towers, opposite-towers and itermediate points * n=3 probes all points: center, towers and opposite towers / sets all
* averages between 4 '4 point' calibrations * n>3 probes all points multiple times and averages
* * A = abort 1 point delta height calibration after 1 probe
* V Verbose level (0-3, default 1) * O = use oposite tower points instead of tower points with 4 point calibration
* * T = do not calibrate tower angles with 7+ point calibration
* 0: Dry-run mode: no calibration
* 1: Settings
* 2: Setting + probe results
* 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
* This prematurely stops the iteration process when factors are found
*/ */
inline void gcode_G33() { inline void gcode_G33() {
@ -5091,49 +5093,55 @@ inline void gcode_G28() {
set_bed_leveling_enabled(false); set_bed_leveling_enabled(false);
#endif #endif
const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS, int8_t pp = (code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS),
probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS; probe_mode = (WITHIN(pp, 1, 7) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS);
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; probe_mode = (code_seen('A') && probe_mode == 1 ? -probe_mode : probe_mode);
probe_mode = (code_seen('O') && probe_mode == 2 ? -probe_mode : probe_mode);
probe_mode = (code_seen('T') && probe_mode > 2 ? -probe_mode : probe_mode);
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) int8_t verbose_level = (code_seen('V') ? code_value_byte() : 1);
#define _MAX_M33_V 3
if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
#else
#define _MAX_M33_V 2
if (verbose_level > 2)
SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
#endif
if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1; if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1;
float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
gcode_G28(); gcode_G28();
float e_old[XYZ], const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
e_old[XYZ] = {
endstop_adj[A_AXIS],
endstop_adj[B_AXIS],
endstop_adj[C_AXIS]
},
dr_old = delta_radius, dr_old = delta_radius,
zh_old = home_offset[Z_AXIS]; zh_old = home_offset[Z_AXIS],
COPY(e_old,endstop_adj); alpha_old = delta_tower_angle_trim[A_AXIS],
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) beta_old = delta_tower_angle_trim[B_AXIS];
// expert variables int8_t iterations = 0,
float h_f_old = 1.00, r_f_old = 0.00, probe_points = abs(probe_mode);
h_diff_min = 1.00, r_diff_max = 0.10; const bool pp_equals_1 = (probe_points == 1),
#endif pp_equals_2 = (probe_points == 2),
pp_equals_3 = (probe_points == 3),
pp_equals_4 = (probe_points == 4),
pp_equals_5 = (probe_points == 5),
pp_equals_6 = (probe_points == 6),
pp_equals_7 = (probe_points == 7),
pp_greather_2 = (probe_points > 2),
pp_greather_3 = (probe_points > 3),
pp_greather_4 = (probe_points > 4),
pp_greather_5 = (probe_points > 5);
// print settings // print settings
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
SERIAL_PROTOCOLPGM("Checking... AC"); SERIAL_PROTOCOLPGM("Checking... AC");
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)"); if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
#endif
SERIAL_EOL; SERIAL_EOL;
LCD_MESSAGEPGM("Checking... AC"); LCD_MESSAGEPGM("Checking... AC");
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (abs(probe_points) > 1) { if (!pp_equals_1) {
SERIAL_PROTOCOLPGM(" Ex:"); SERIAL_PROTOCOLPGM(" Ex:");
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
@ -5146,74 +5154,84 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
} }
SERIAL_EOL; SERIAL_EOL;
if (probe_mode > 2) { // negative disables tower angles
SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
SERIAL_PROTOCOLPGM(" Ty:");
if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
SERIAL_PROTOCOLPGM(" Tz:+0.00");
SERIAL_EOL;
}
#if ENABLED(Z_PROBE_SLED) #if ENABLED(Z_PROBE_SLED)
DEPLOY_PROBE(); DEPLOY_PROBE();
#endif #endif
float test_precision; do {
int8_t iterations = 0;
do { // start iterations
setup_for_endstop_or_probe_move();
test_precision =
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
// Expert mode : forced end at std_dev < 0.1
(verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
#endif
zero_std_dev
;
float z_at_pt[13] = { 0 }; float z_at_pt[13] = { 0 },
S1 = 0.0,
S2 = 0.0;
int16_t N = 0;
test_precision = zero_std_dev;
iterations++; iterations++;
// probe the points // probe the points
int16_t center_points = 0; if (!pp_equals_3 && !pp_equals_6) { // probe the centre
setup_for_endstop_or_probe_move();
if (probe_points != 3) {
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1); z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
center_points = 1; clean_up_after_endstop_or_probe_move();
} }
if (pp_greather_2) { // probe extra centre points
int16_t step_axis = 4; for (int8_t axis = (pp_greather_4 ? 11 : 9); axis > 0; axis -= (pp_greather_4 ? 2 : 4)) {
if (probe_points >= 3) { setup_for_endstop_or_probe_move();
for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
z_at_pt[0] += probe_pt( z_at_pt[0] += probe_pt(
0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1); sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
clean_up_after_endstop_or_probe_move();
} }
center_points += 3; z_at_pt[0] /= (pp_equals_5 ? 7 : probe_points);
z_at_pt[0] /= center_points;
} }
if (!pp_equals_1) { // probe the radius
float S1 = z_at_pt[0], S2 = sq(S1); float start_circles = (pp_equals_7 ? -1.5 : pp_equals_6 || pp_equals_5 ? -1 : 0),
end_circles = -start_circles;
int16_t N = 1, start = (probe_points == -2) ? 3 : 1; bool zig_zag = true;
step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1; for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
axis += (pp_equals_2 ? 4 : pp_equals_3 || pp_equals_5 ? 2 : 1)) {
if (probe_points != 1) { for (float circles = start_circles ; circles <= end_circles; circles++) {
for (uint8_t axis = start; axis < 13; axis += step_axis) setup_for_endstop_or_probe_move();
z_at_pt[axis] += probe_pt( z_at_pt[axis] += probe_pt(
cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), cos(RADIANS(180 + 30 * axis)) *
sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1 (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius,
); sin(RADIANS(180 + 30 * axis)) *
(1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius, true, 1);
if (probe_points == 4) step_axis = 2; clean_up_after_endstop_or_probe_move();
} }
start_circles += (pp_greather_5 ? (zig_zag ? 0.5 : -0.5) : 0);
for (uint8_t axis = start; axis < 13; axis += step_axis) { end_circles = -start_circles;
if (probe_points == 4) zig_zag = !zig_zag;
z_at_pt[axis] /= (pp_equals_7 ? (zig_zag ? 4.0 : 3.0) :
pp_equals_6 ? (zig_zag ? 3.0 : 2.0) : pp_equals_5 ? 3 : 1);
}
}
if (pp_greather_3 && !pp_equals_5) // average intermediates to tower and opposites
for (uint8_t axis = 1; axis < 13; axis += 2)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
S1 += z_at_pt[0];
S2 += sq(z_at_pt[0]);
N++;
if (!pp_equals_1) // std dev from zero plane
for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (pp_equals_2 ? 4 : 2)) {
S1 += z_at_pt[axis]; S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]); S2 += sq(z_at_pt[axis]);
N++; N++;
} }
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
// Solve matrices // Solve matrices
@ -5221,28 +5239,33 @@ inline void gcode_G28() {
COPY(e_old, endstop_adj); COPY(e_old, endstop_adj);
dr_old = delta_radius; dr_old = delta_radius;
zh_old = home_offset[Z_AXIS]; zh_old = home_offset[Z_AXIS];
alpha_old = delta_tower_angle_trim[A_AXIS];
beta_old = delta_tower_angle_trim[B_AXIS];
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0; float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
t_alpha = 0.0, t_beta = 0.0;
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) const float r_diff = delta_radius - delta_calibration_radius,
float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0, h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
h_diff = 0.00, r_diff = 0.00; r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
#endif a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
#define ZP(N,I) ((N) * z_at_pt[I]) #define ZP(N,I) ((N) * z_at_pt[I])
#define Z1000(I) ZP(1.00, I) #define Z1000(I) ZP(1.00, I)
#define Z1050(I) ZP(H_FACTOR, I) #define Z1050(I) ZP(h_factor, I)
#define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I) #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
#define Z0350(I) ZP((H_FACTOR) / 3.00, I) #define Z0350(I) ZP(h_factor / 3.00, I)
#define Z0175(I) ZP((H_FACTOR) / 6.00, I) #define Z0175(I) ZP(h_factor / 6.00, I)
#define Z2250(I) ZP(R_FACTOR, I) #define Z2250(I) ZP(r_factor, I)
#define Z0750(I) ZP((R_FACTOR) / 3.00, I) #define Z0750(I) ZP(r_factor / 3.00, I)
#define Z0375(I) ZP((R_FACTOR) / 6.00, I) #define Z0375(I) ZP(r_factor / 6.00, I)
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
switch (probe_points) { #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
switch (probe_mode) {
case -1:
test_precision = 0.00;
case 1: case 1:
LOOP_XYZ(i) e_delta[i] = Z1000(0); LOOP_XYZ(i) e_delta[i] = Z1000(0);
r_delta = 0.00;
break; break;
case 2: case 2:
@ -5264,67 +5287,43 @@ inline void gcode_G28() {
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3); e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3); e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3); r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
break;
}
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
// Calculate h & r factors
if (verbose_level == 3) {
LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
r_f_new = r_delta;
h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
if (r_f_old != 0)
r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
+ 0.311 * sq(R_FACTOR)
+ 1.1493 * R_FACTOR
+ 1.7952
) * (r_f_old - r_f_new) / r_f_old;
if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
SERIAL_EOL;
h_f_old = h_f_new; if (probe_mode > 0) { // negative disables tower angles
r_f_old = r_f_new; t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
}
break;
} }
#endif // DELTA_CALIBRATE_EXPERT_MODE
// Adjust delta_height and endstops by the max amount
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
delta_radius += r_delta; delta_radius += r_delta;
delta_tower_angle_trim[A_AXIS] += t_alpha;
delta_tower_angle_trim[B_AXIS] -= t_beta;
const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]); // adjust delta_height and endstops by the max amount
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp; home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp; LOOP_XYZ(i) endstop_adj[i] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
else { // !iterate else { // step one back
// step one back
COPY(endstop_adj, e_old); COPY(endstop_adj, e_old);
delta_radius = dr_old; delta_radius = dr_old;
home_offset[Z_AXIS] = zh_old; home_offset[Z_AXIS] = zh_old;
delta_tower_angle_trim[A_AXIS] = alpha_old;
delta_tower_angle_trim[B_AXIS] = beta_old;
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
// print report // print report
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) if (verbose_level != 1) {
if (verbose_level == 3) {
const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
- 44.988 * sq(r_diff_max)
+ 31.697 * r_diff_max
- 9.4439;
SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
SERIAL_EOL;
}
#endif
if (verbose_level == 2) {
SERIAL_PROTOCOLPGM(". c:"); SERIAL_PROTOCOLPGM(". c:");
if (z_at_pt[0] > 0) SERIAL_CHAR('+'); if (z_at_pt[0] > 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[0], 2); SERIAL_PROTOCOL_F(z_at_pt[0], 2);
if (probe_points > 1) { if (probe_mode == 2 || pp_greather_2) {
SERIAL_PROTOCOLPGM(" x:"); SERIAL_PROTOCOLPGM(" x:");
if (z_at_pt[1] >= 0) SERIAL_CHAR('+'); if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[1], 2); SERIAL_PROTOCOL_F(z_at_pt[1], 2);
@ -5335,9 +5334,12 @@ inline void gcode_G28() {
if (z_at_pt[9] >= 0) SERIAL_CHAR('+'); if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[9], 2); SERIAL_PROTOCOL_F(z_at_pt[9], 2);
} }
if (probe_points > 0) SERIAL_EOL; if (probe_mode != -2) SERIAL_EOL;
if (probe_points > 2 || probe_points == -2) { if (probe_mode == -2 || pp_greather_2) {
if (probe_points > 2) SERIAL_PROTOCOLPGM(". "); if (pp_greather_2) {
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
SERIAL_PROTOCOLPGM(" yz:"); SERIAL_PROTOCOLPGM(" yz:");
if (z_at_pt[7] >= 0) SERIAL_CHAR('+'); if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(z_at_pt[7], 2); SERIAL_PROTOCOL_F(z_at_pt[7], 2);
@ -5351,24 +5353,26 @@ inline void gcode_G28() {
} }
} }
if (test_precision != 0.0) { // !forced end if (test_precision != 0.0) { // !forced end
if (zero_std_dev >= test_precision) { if (zero_std_dev >= test_precision) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK"); SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOLLNPGM(" rolling back 1"); SERIAL_PROTOCOL_SP(36);
LCD_MESSAGEPGM("Calibration OK"); SERIAL_PROTOCOLPGM("rolling back.");
SERIAL_EOL; SERIAL_EOL;
LCD_MESSAGEPGM("Calibration OK");
} }
else { // !end iterations else { // !end iterations
char mess[15] = "No convergence"; char mess[15] = "No convergence";
if (iterations < 31) if (iterations < 31)
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
SERIAL_PROTOCOL(mess); SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOLPGM(" std dev:"); SERIAL_PROTOCOL_SP(36);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL; SERIAL_EOL;
lcd_setstatus(mess); lcd_setstatus(mess);
} }
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
if (abs(probe_points) > 1) { if (!pp_equals_1) {
SERIAL_PROTOCOLPGM(" Ex:"); SERIAL_PROTOCOLPGM(" Ex:");
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+'); if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2); SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
@ -5381,23 +5385,38 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
} }
SERIAL_EOL; SERIAL_EOL;
if (probe_mode > 2) { // negative disables tower angles
SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
SERIAL_PROTOCOLPGM(" Ty:");
if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
SERIAL_PROTOCOLPGM(" Tz:+0.00");
SERIAL_EOL;
}
if (zero_std_dev >= test_precision) if (zero_std_dev >= test_precision)
SERIAL_PROTOCOLLNPGM("Save with M500"); serialprintPGM(save_message);
SERIAL_EOL;
} }
else { // forced end else { // forced end
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE) if (verbose_level == 0) {
if (verbose_level == 3) SERIAL_PROTOCOLPGM("End DRY-RUN");
SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h"); SERIAL_PROTOCOL_SP(39);
else SERIAL_PROTOCOLPGM("std dev:");
#endif
{
SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL; SERIAL_EOL;
} }
else {
SERIAL_PROTOCOLLNPGM("Calibration OK");
LCD_MESSAGEPGM("Calibration OK");
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
SERIAL_EOL;
serialprintPGM(save_message);
SERIAL_EOL;
}
} }
clean_up_after_endstop_or_probe_move();
stepper.synchronize(); stepper.synchronize();
gcode_G28(); gcode_G28();
@ -7620,12 +7639,13 @@ inline void gcode_M205() {
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units(); if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
if (code_seen('R')) delta_radius = code_value_linear_units(); if (code_seen('R')) delta_radius = code_value_linear_units();
if (code_seen('S')) delta_segments_per_second = code_value_float(); if (code_seen('S')) delta_segments_per_second = code_value_float();
if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units(); if (code_seen('B')) delta_calibration_radius = code_value_float();
if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units(); if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units(); if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units(); if (code_seen('Z')) { // rotate all 3 axis for Z = 0
if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units(); delta_tower_angle_trim[A_AXIS] -= code_value_linear_units();
if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units(); delta_tower_angle_trim[B_AXIS] -= code_value_linear_units();
}
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
/** /**
@ -7653,6 +7673,10 @@ inline void gcode_M205() {
SERIAL_ECHOLNPGM("<<< gcode_M666"); SERIAL_ECHOLNPGM("<<< gcode_M666");
} }
#endif #endif
// normalize endstops so all are <=0; set the residue to delta height
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
} }
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
@ -8564,7 +8588,7 @@ inline void gcode_M503() {
if (!isnan(last_zoffset)) { if (!isnan(last_zoffset)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
const float diff = zprobe_zoffset - last_zoffset; const float diff = zprobe_zoffset - last_zoffset;
#endif #endif
@ -8586,6 +8610,10 @@ inline void gcode_M503() {
#else #else
UNUSED(no_babystep); UNUSED(no_babystep);
#endif #endif
#if ENABLED(DELTA) // correct the delta_height
home_offset[Z_AXIS] -= diff;
#endif
} }
last_zoffset = zprobe_zoffset; last_zoffset = zprobe_zoffset;
@ -10651,15 +10679,17 @@ void ok_to_send() {
* settings have been changed (e.g., by M665). * settings have been changed (e.g., by M665).
*/ */
void recalc_delta_settings(float radius, float diagonal_rod) { void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]); delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]); delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]); delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
} }
#if ENABLED(DELTA_FAST_SQRT) #if ENABLED(DELTA_FAST_SQRT)

@ -42,7 +42,7 @@
#define EEPROM_OFFSET 100 #define EEPROM_OFFSET 100
/** /**
* V33 EEPROM Layout: * V35 EEPROM Layout:
* *
* 100 Version (char x4) * 100 Version (char x4)
* 104 EEPROM Checksum (uint16_t) * 104 EEPROM Checksum (uint16_t)
@ -97,12 +97,10 @@
* 360 M665 R delta_radius (float) * 360 M665 R delta_radius (float)
* 364 M665 L delta_diagonal_rod (float) * 364 M665 L delta_diagonal_rod (float)
* 368 M665 S delta_segments_per_second (float) * 368 M665 S delta_segments_per_second (float)
* 372 M665 A delta_diagonal_rod_trim[A] (float) * 372 M665 B delta_calibration_radius (float)
* 376 M665 B delta_diagonal_rod_trim[B] (float) * 376 M665 X delta_tower_angle_trim[A] (float)
* 380 M665 C delta_diagonal_rod_trim[C] (float) * 380 M665 Y delta_tower_angle_trim[B] (float)
* 384 M665 I delta_tower_angle_trim[A] (float) * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0
* 388 M665 J delta_tower_angle_trim[B] (float)
* 392 M665 K delta_tower_angle_trim[C] (float)
* *
* Z_DUAL_ENDSTOPS: 48 bytes * Z_DUAL_ENDSTOPS: 48 bytes
* 348 M666 Z z_endstop_adj (float) * 348 M666 Z z_endstop_adj (float)
@ -428,8 +426,10 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats EEPROM_WRITE(delta_calibration_radius); // 1 float
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats EEPROM_WRITE(delta_tower_angle_trim); // 2 floats
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(z_endstop_adj); // 1 float EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f; dummy = 0.0f;
@ -802,8 +802,10 @@ void MarlinSettings::postprocess() {
EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_diagonal_rod_trim); // 3 floats EEPROM_READ(delta_calibration_radius); // 1 float
EEPROM_READ(delta_tower_angle_trim); // 3 floats EEPROM_READ(delta_tower_angle_trim); // 2 floats
dummy = 0.0f;
for (uint8_t q=3; q--;) EEPROM_READ(dummy);
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj); EEPROM_READ(z_endstop_adj);
dummy = 0.0f; dummy = 0.0f;
@ -1079,14 +1081,14 @@ void MarlinSettings::reset() {
#if ENABLED(DELTA) #if ENABLED(DELTA)
const float adj[ABC] = DELTA_ENDSTOP_ADJ, const float adj[ABC] = DELTA_ENDSTOP_ADJ,
drt[ABC] = { DELTA_DIAGONAL_ROD_TRIM_TOWER_1, DELTA_DIAGONAL_ROD_TRIM_TOWER_2, DELTA_DIAGONAL_ROD_TRIM_TOWER_3 }, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
dta[ABC] = { DELTA_TOWER_ANGLE_TRIM_1, DELTA_TOWER_ANGLE_TRIM_2, DELTA_TOWER_ANGLE_TRIM_3 };
COPY(endstop_adj, adj); COPY(endstop_adj, adj);
delta_radius = DELTA_RADIUS; delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
COPY(delta_diagonal_rod_trim, drt); delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
COPY(delta_tower_angle_trim, dta); delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
home_offset[Z_AXIS] = 0; home_offset[Z_AXIS] = 0;
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
@ -1488,19 +1490,18 @@ void MarlinSettings::reset() {
SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS])); SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
if (!forReplay) { if (!forReplay) {
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> ABC<diagonal_rod_[123]_trim>"); SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
} }
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod)); SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius)); SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS])); SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
SERIAL_ECHOPAIR(" S", delta_segments_per_second); SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", LINEAR_UNIT(delta_diagonal_rod_trim[A_AXIS])); SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_diagonal_rod_trim[B_AXIS])); SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
SERIAL_ECHOPAIR(" C", LINEAR_UNIT(delta_diagonal_rod_trim[C_AXIS])); SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
SERIAL_ECHOPAIR(" I", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])); SERIAL_ECHOPAIR(" Z", 0.00);
SERIAL_ECHOPAIR(" J", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])); SERIAL_EOL;
SERIAL_ECHOLNPAIR(" K", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
if (!forReplay) { if (!forReplay) {
CONFIG_ECHO_START; CONFIG_ECHO_START;

@ -1,4 +1,4 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
@ -431,53 +431,47 @@
// and processor overload (too many expensive sqrt calls). // and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 160 #define DELTA_SEGMENTS_PER_SECOND 160
// NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them
// Center-to-center distance of the holes in the diagonal push rods. // Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 218.0 // mm #define DELTA_DIAGONAL_ROD 218.0 // mm
// Horizontal offset from middle of printer to smooth rod center.
//#define DELTA_SMOOTH_ROD_OFFSET 150.0 // mm
// Horizontal offset of the universal joints on the end effector.
//#define DELTA_EFFECTOR_OFFSET 24.0 // mm
// Horizontal offset of the universal joints on the carriages.
//#define DELTA_CARRIAGE_OFFSET 22.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS 100.59 //mm // get this value from auto calibrate #define DELTA_RADIUS 100.00 //mm // get this value from auto calibrate
// height from z=0.00 to home position // height from z=0 to home position
#define DELTA_HEIGHT 298.95 // get this value from auto calibrate #define DELTA_HEIGHT 295.00 // get this value from auto calibrate - use G33 P1 A at 1st time calibration
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 90.0 #define DELTA_PRINTABLE_RADIUS 85.0
// Delta calibration menu // Delta calibration menu
// uncomment to add three points calibration menu option.
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
#define DELTA_CALIBRATION_MENU #define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
#define DELTA_AUTO_CALIBRATION #define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 // set the default number of probe points : n*n (-7 -> +7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE #define DELTA_HOME_TO_SAFE_ZONE
#define DELTA_ENDSTOP_ADJ { -0.05, -0.00, -0.02 } // get these from auto calibrate #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif
@ -697,7 +691,7 @@
*/ */
#define X_PROBE_OFFSET_FROM_EXTRUDER 0 // X offset: -left +right [of the nozzle] #define X_PROBE_OFFSET_FROM_EXTRUDER 0 // X offset: -left +right [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER 0 // Y offset: -front +behind [the nozzle] #define Y_PROBE_OFFSET_FROM_EXTRUDER 0 // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER 0.25 // Z offset: -below +above [the nozzle] #define Z_PROBE_OFFSET_FROM_EXTRUDER 0.10 // Z offset: -below +above [the nozzle]
// X and Y axis travel speed (mm/m) between probes // X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 5000 #define XY_PROBE_SPEED 5000
@ -706,7 +700,7 @@
#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z #define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z
// Speed for the "accurate" probe of each point // Speed for the "accurate" probe of each point
#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 4) #define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST) / 6
// Use double touch for probing // Use double touch for probing
//#define PROBE_DOUBLE_TOUCH //#define PROBE_DOUBLE_TOUCH
@ -775,8 +769,8 @@
* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle. * Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle. * But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.
*/ */
#define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow #define Z_CLEARANCE_DEPLOY_PROBE 5 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 3 // Z Clearance between probe points #define Z_CLEARANCE_BETWEEN_PROBES 2 // Z Clearance between probe points
// For M851 give a range for adjusting the Z probe offset // For M851 give a range for adjusting the Z probe offset
#define Z_PROBE_OFFSET_RANGE_MIN -20 #define Z_PROBE_OFFSET_RANGE_MIN -20
@ -808,11 +802,11 @@
// @section machine // @section machine
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR true #define INVERT_X_DIR true // DELTA does not invert
#define INVERT_Y_DIR true #define INVERT_Y_DIR true
#define INVERT_Z_DIR true #define INVERT_Z_DIR true
// Enable this option for Toshiba stepper drivers // Enable this option for Toshiba steppers drivers
//#define CONFIG_STEPPERS_TOSHIBA //#define CONFIG_STEPPERS_TOSHIBA
// @section extruder // @section extruder
@ -910,7 +904,7 @@
*/ */
//#define AUTO_BED_LEVELING_3POINT //#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR //#define AUTO_BED_LEVELING_LINEAR
#define AUTO_BED_LEVELING_BILINEAR //#define AUTO_BED_LEVELING_BILINEAR
//#define AUTO_BED_LEVELING_UBL //#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING //#define MESH_BED_LEVELING
@ -931,8 +925,7 @@
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension. // Set the number of grid points per dimension.
// Works best with 5 or more points in each dimension. #define GRID_MAX_POINTS_X 7
#define GRID_MAX_POINTS_X 9
#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X
// Set the boundaries for probing (where the probe can reach). // Set the boundaries for probing (where the probe can reach).
@ -943,12 +936,13 @@
#define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS #define BACK_PROBE_BED_POSITION DELTA_PROBEABLE_RADIUS
// The Z probe minimum outer margin (to validate G29 parameters). // The Z probe minimum outer margin (to validate G29 parameters).
#define MIN_PROBE_EDGE 10 #define MIN_PROBE_EDGE 20
// Probe along the Y axis, advancing X after each column // Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST //#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// //
// Experimental Subdivision of the grid by Catmull-Rom method. // Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh. // Synthesizes intermediate points to produce a more detailed mesh.
@ -1098,8 +1092,8 @@
// @section temperature // @section temperature
// Preheat Constants // Preheat Constants
#define PREHEAT_1_TEMP_HOTEND 185 #define PREHEAT_1_TEMP_HOTEND 195
#define PREHEAT_1_TEMP_BED 70 #define PREHEAT_1_TEMP_BED 60
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255 #define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255
#define PREHEAT_2_TEMP_HOTEND 240 #define PREHEAT_2_TEMP_HOTEND 240
@ -1345,6 +1339,7 @@
// //
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu. // Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
// //
// INDIVIDUAL_AXIS_HOMING_MENU is incompatible with DELTA kinematics.
//#define INDIVIDUAL_AXIS_HOMING_MENU //#define INDIVIDUAL_AXIS_HOMING_MENU
// //
@ -1673,8 +1668,8 @@
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 // Index of the extruder that has the filament sensor (0,1,2,3) #define FILAMENT_SENSOR_EXTRUDER_NUM 0 // Index of the extruder that has the filament sensor (0,1,2,3)
#define MEASUREMENT_DELAY_CM 14 // (cm) The distance from the filament sensor to the melting chamber #define MEASUREMENT_DELAY_CM 14 // (cm) The distance from the filament sensor to the melting chamber
#define MEASURED_UPPER_LIMIT 3.30 // (mm) Upper limit used to validate sensor reading #define MEASURED_UPPER_LIMIT 1.95 // (mm) Upper limit used to validate sensor reading
#define MEASURED_LOWER_LIMIT 1.90 // (mm) Lower limit used to validate sensor reading #define MEASURED_LOWER_LIMIT 1.20 // (mm) Lower limit used to validate sensor reading
#define MAX_MEASUREMENT_DELAY 20 // (bytes) Buffer size for stored measurements (1 byte per cm). Must be larger than MEASUREMENT_DELAY_CM. #define MAX_MEASUREMENT_DELAY 20 // (bytes) Buffer size for stored measurements (1 byte per cm). Must be larger than MEASUREMENT_DELAY_CM.
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA // Set measured to nominal initially #define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA // Set measured to nominal initially

@ -419,25 +419,6 @@
// Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* Set the height short (H-10) with M665 Hx.xx.
* Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx.
* Run G33 Cx V3 (C2, C-2) with different values for C and R
* Take the average for R_FACTOR and maximum for H_FACTOR.
* Run the tests with default values!!!
*/
//#define DELTA_CALIBRATE_EXPERT_MODE
// Remove the comments of the folling 2 lines to overide default values
#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00
#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25
#endif
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================
//=========================================================================== //===========================================================================

@ -444,10 +444,10 @@
#define DELTA_CARRIAGE_OFFSET 22.0 // mm #define DELTA_CARRIAGE_OFFSET 22.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
// height from z=0.00 to home position // height from z=0.00 to home position
#define DELTA_HEIGHT 280 // get this value from auto calibrate #define DELTA_HEIGHT 280 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 85.0 #define DELTA_PRINTABLE_RADIUS 85.0
@ -457,28 +457,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 17) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION //#define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
//#define DELTA_HOME_TO_SAFE_ZONE //#define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -1,4 +1,4 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
@ -419,25 +419,6 @@
// Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* Set the height short (H-10) with M665 Hx.xx.
* Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx.
* Run G33 Cx V3 (C2, C-2) with different values for C and R
* Take the average for R_FACTOR and maximum for H_FACTOR.
* Run the tests with default values!!!
*/
//#define DELTA_CALIBRATE_EXPERT_MODE
// Remove the comments of the folling 2 lines to overide default values
#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00
#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25
#endif
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================
//=========================================================================== //===========================================================================

@ -434,10 +434,10 @@
#define DELTA_CARRIAGE_OFFSET 18.0 // mm #define DELTA_CARRIAGE_OFFSET 18.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate // height from z=0.00 to home position
// height from z=0.00 to home position // height from z=0.00 to home position
#define DELTA_HEIGHT 250 // get this value from auto calibrate #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 140.0 #define DELTA_PRINTABLE_RADIUS 140.0
@ -446,28 +446,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION //#define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE //#define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -1,4 +1,4 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
@ -419,25 +419,6 @@
// Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* Set the height short (H-10) with M665 Hx.xx.
* Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx.
* Run G33 Cx V3 (C2, C-2) with different values for C and R
* Take the average for R_FACTOR and maximum for H_FACTOR.
* Run the tests with default values!!!
*/
//#define DELTA_CALIBRATE_EXPERT_MODE
// Remove the comments of the folling 2 lines to overide default values
//#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00
//#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25
#endif
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================
//=========================================================================== //===========================================================================

@ -434,10 +434,10 @@
#define DELTA_CARRIAGE_OFFSET 19.5 // mm #define DELTA_CARRIAGE_OFFSET 19.5 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
// height from z=0.00 to home position // height from z=0.00 to home position
#define DELTA_HEIGHT 250 // get this value from auto calibrate #define DELTA_HEIGHT 250 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 90.0 #define DELTA_PRINTABLE_RADIUS 90.0
@ -446,28 +446,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 18) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION //#define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE //#define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -1,4 +1,4 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
@ -419,25 +419,6 @@
// Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* Set the height short (H-10) with M665 Hx.xx.
* Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx.
* Run G33 Cx V3 (C2, C-2) with different values for C and R
* Take the average for R_FACTOR and maximum for H_FACTOR.
* Run the tests with default values!!!
*/
//#define DELTA_CALIBRATE_EXPERT_MODE
// Remove the comments of the folling 2 lines to overide default values
//#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00
//#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25
#endif
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================
//=========================================================================== //===========================================================================

@ -421,10 +421,10 @@
#define DELTA_CARRIAGE_OFFSET 30.0 // mm #define DELTA_CARRIAGE_OFFSET 30.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET)) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
// height from z=0.00 to home position // height from z=0.00 to home position
#define DELTA_HEIGHT 277 // get this value from auto calibrate #define DELTA_HEIGHT 277 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 127.0 #define DELTA_PRINTABLE_RADIUS 127.0
@ -433,28 +433,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 25.4) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION //#define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE //#define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -1,4 +1,4 @@
/** /**
* Marlin 3D Printer Firmware * Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* *
@ -424,26 +424,6 @@
// Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* Set the height short (H-10) with M665 Hx.xx.
* Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx.
* Run G33 Cx V3 (C2, C-2) with different values for C and R
* Take the average for R_FACTOR and maximum for H_FACTOR.
* Run the tests with default values!!!
*/
//#define DELTA_CALIBRATE_EXPERT_MODE
// Remove the comments of the folling 2 lines to overide default values
//#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00
//#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25
#endif
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================
//=========================================================================== //===========================================================================

@ -439,10 +439,10 @@
#define DELTA_CARRIAGE_OFFSET 22.0 // mm #define DELTA_CARRIAGE_OFFSET 22.0 // mm
// Horizontal distance bridged by diagonal push rods when effector is centered. // Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-(DELTA_EFFECTOR_OFFSET)-(DELTA_CARRIAGE_OFFSET) + 1) #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET - DELTA_EFFECTOR_OFFSET - DELTA_CARRIAGE_OFFSET) //mm // get this value from auto calibrate
// height from z=0.00 to home position // height from z=0.00 to home position
#define DELTA_HEIGHT 380 // get this value from auto calibrate #define DELTA_HEIGHT 380 // get this value from auto calibrate - use G33 C-1 at 1st time calibration
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). // Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 140.0 #define DELTA_PRINTABLE_RADIUS 140.0
@ -451,28 +451,28 @@
// See http://minow.blogspot.com/index.html#4918805519571907051 // See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU //#define DELTA_CALIBRATION_MENU
// set the radius for the calibration probe points - max 0.8 * DELTA_PRINTABLE_RADIUS if DELTA_AUTO_CALIBRATION enabled
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 28) // mm
// G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results) // G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION //#define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
#define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (1-4) #define DELTA_CALIBRATION_DEFAULT_POINTS 3 // set the default number of probe points : n*n (-7 -> +7)
#define DELTA_CALIBRATION_RADIUS (DELTA_PRINTABLE_RADIUS - 15) // set the radius for the calibration probe points
#endif #endif
// After homing move down to a height where XY movement is unconstrained // After homing move down to a height where XY movement is unconstrained
#define DELTA_HOME_TO_SAFE_ZONE //#define DELTA_HOME_TO_SAFE_ZONE
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 } #define DELTA_ENDSTOP_ADJ { 0, 0, 0 } // get these from auto calibrate
// Trim adjustments for individual towers // Trim adjustments for individual towers
#define DELTA_RADIUS_TRIM_TOWER_1 0.0 // tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
#define DELTA_RADIUS_TRIM_TOWER_2 0.0 // measured in degrees anticlockwise looking from above the printer
#define DELTA_RADIUS_TRIM_TOWER_3 0.0 #define DELTA_TOWER_ANGLE_TRIM { 0, 0, 0 } // get these from auto calibrate
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_1 0.0
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_2 0.0 // delta radius and diaginal rod adjustments measured in mm
#define DELTA_DIAGONAL_ROD_TRIM_TOWER_3 0.0 //#define DELTA_RADIUS_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_1 0.0 //#define DELTA_DIAGONAL_ROD_TRIM_TOWER {0, 0, 0}
#define DELTA_TOWER_ANGLE_TRIM_2 0.0
#define DELTA_TOWER_ANGLE_TRIM_3 0.0
#endif #endif

@ -419,25 +419,6 @@
// Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS // Actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO #define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0} // AZTEEG_X3_PRO
//===========================================================================
//============================== Delta Settings =============================
//===========================================================================
#if ENABLED(DELTA_AUTO_CALIBRATION)
/**
* Set the height short (H-10) with M665 Hx.xx.
* Set the delta_radius offset (R-5, R-10, R+5, R+10) with M665 Rx.xx.
* Run G33 Cx V3 (C2, C-2) with different values for C and R
* Take the average for R_FACTOR and maximum for H_FACTOR.
* Run the tests with default values!!!
*/
//#define DELTA_CALIBRATE_EXPERT_MODE
// Remove the comments of the folling 2 lines to overide default values
//#define H_FACTOR 1.02 // 1.0 < H_FACTOR < 1.11, default 1.00
//#define R_FACTOR -3.95 // -6.7 < R_FACTOR < -2.25, default -2.25
#endif
//=========================================================================== //===========================================================================
//=============================Additional Features=========================== //=============================Additional Features===========================
//=========================================================================== //===========================================================================

@ -32,3 +32,5 @@ void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P);
void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_spaces(uint8_t count) { while (count--) MYSERIAL.write(' '); }

@ -84,6 +84,11 @@ FORCE_INLINE void serial_echopair_P(const char* s_P, uint16_t v) { serial_echopa
FORCE_INLINE void serial_echopair_P(const char* s_P, bool v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, bool v) { serial_echopair_P(s_P, (int)v); }
FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_P(s_P, (unsigned long)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_P(s_P, (unsigned long)v); }
void serial_spaces(uint8_t count);
#define SERIAL_ECHO_SP(C) serial_spaces(C)
#define SERIAL_ERROR_SP(C) serial_spaces(C)
#define SERIAL_PROTOCOL_SP(C) serial_spaces(C)
// //
// Functions for serial printing from PROGMEM. (Saves loads of SRAM.) // Functions for serial printing from PROGMEM. (Saves loads of SRAM.)
// //

@ -1816,20 +1816,14 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(_lcd_calibrate_homing); lcd_goto_screen(_lcd_calibrate_homing);
} }
#if ENABLED(DELTA_AUTO_CALIBRATION)
#define _DELTA_TOWER_MOVE_RADIUS DELTA_CALIBRATION_RADIUS
#else
#define _DELTA_TOWER_MOVE_RADIUS DELTA_PRINTABLE_RADIUS
#endif
// Move directly to the tower position with uninterpolated moves // Move directly to the tower position with uninterpolated moves
// If we used interpolated moves it would cause this to become re-entrant // If we used interpolated moves it would cause this to become re-entrant
void _goto_tower_pos(const float &a) { void _goto_tower_pos(const float &a) {
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5; current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
line_to_current(Z_AXIS); line_to_current(Z_AXIS);
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(_DELTA_TOWER_MOVE_RADIUS); current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : cos(RADIANS(a)) * delta_calibration_radius;
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (_DELTA_TOWER_MOVE_RADIUS); current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : sin(RADIANS(a)) * delta_calibration_radius;
line_to_current(Z_AXIS); line_to_current(Z_AXIS);
current_position[Z_AXIS] = 4.0; current_position[Z_AXIS] = 4.0;
@ -1841,17 +1835,17 @@ void kill_screen(const char* lcd_msg) {
lcd_goto_screen(lcd_move_z); lcd_goto_screen(lcd_move_z);
} }
void _goto_tower_x() { _goto_tower_pos(RADIANS(120)); } void _goto_tower_x() { _goto_tower_pos(210); }
void _goto_tower_y() { _goto_tower_pos(RADIANS(240)); } void _goto_tower_y() { _goto_tower_pos(330); }
void _goto_tower_z() { _goto_tower_pos(0); } void _goto_tower_z() { _goto_tower_pos(90); }
void _goto_center() { _goto_tower_pos(-1); } void _goto_center() { _goto_tower_pos(-1); }
void lcd_delta_calibrate_menu() { void lcd_delta_calibrate_menu() {
START_MENU(); START_MENU();
MENU_BACK(MSG_MAIN); MENU_BACK(MSG_MAIN);
#if ENABLED(DELTA_AUTO_CALIBRATION) #if ENABLED(DELTA_AUTO_CALIBRATION)
MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C")); MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33"));
MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C1")); MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 P1 A"));
#endif #endif
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home); MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);
if (axis_homed[Z_AXIS]) { if (axis_homed[Z_AXIS]) {

Loading…
Cancel
Save