Patch LIN_ADVANCE for style and forward-compatibility

master
Scott Lahteine 9 years ago
parent fb8e880734
commit 6d62a4ffc8

@ -445,6 +445,15 @@
#define D_FILAMENT 2.85 #define D_FILAMENT 2.85
#endif #endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75
#endif
// @section leveling // @section leveling
// Default mesh area is an area with an inset margin on the print area. // Default mesh area is an area with an inset margin on the print area.
@ -457,15 +466,6 @@
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET)) #define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif #endif
//Implementation of a linear pressure control
//Assumption: advance = k * (delta velocity)
//K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)
#define LIN_K 75
#endif
// @section extras // @section extras
// Arc interpretation settings: // Arc interpretation settings:

@ -351,6 +351,13 @@
#endif // AUTO_BED_LEVELING_FEATURE #endif // AUTO_BED_LEVELING_FEATURE
/**
* Advance Extrusion
*/
#if ENABLED(ADVANCE) && ENABLED(LIN_ADVANCE)
#error You can enable ADVANCE or LIN_ADVANCE, but not both.
#endif
/** /**
* Filament Width Sensor * Filament Width Sensor
*/ */
@ -358,7 +365,6 @@
#error "FILAMENT_WIDTH_SENSOR requires a FILWIDTH_PIN to be defined." #error "FILAMENT_WIDTH_SENSOR requires a FILWIDTH_PIN to be defined."
#endif #endif
/** /**
* ULTIPANEL encoder * ULTIPANEL encoder
*/ */

@ -1046,23 +1046,27 @@ void Planner::check_axes_activity() {
block->nominal_length_flag = (block->nominal_speed <= v_allowable); block->nominal_length_flag = (block->nominal_speed <= v_allowable);
block->recalculate_flag = true; // Always calculate trapezoid for new block block->recalculate_flag = true; // Always calculate trapezoid for new block
#ifdef LIN_ADVANCE // Update previous path unit_vector and nominal speed
//bse = allsteps: A problem occures if there is a very tiny move before a retract. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
//In this case, the retract and the move will be executed together. This leads to an enormus amount advance steps due to a hughe e_acceleration. previous_nominal_speed = block->nominal_speed;
//The math is correct, but you don't want a retract move done with advance! This situation has to be filtered out.
if ((!bse || (!bsx && !bsy && !bsz)) || (stepper.get_advance_k() == 0) || (bse == allsteps)) { #if ENABLED(LIN_ADVANCE)
// bse == allsteps: A problem occurs when there's a very tiny move before a retract.
// In this case, the retract and the move will be executed together.
// This leads to an enormous number of advance steps due to a huge e_acceleration.
// The math is correct, but you don't want a retract move done with advance!
// So this situation is filtered out here.
if (!bse || (!bsx && !bsy && !bsz) || stepper.get_advance_k() == 0 || bse == allsteps) {
block->use_advance_lead = false; block->use_advance_lead = false;
} else { }
else {
block->use_advance_lead = true; block->use_advance_lead = true;
block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count; block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
} }
#endif
// Update previous path unit_vector and nominal speed #elif ENABLED(ADVANCE)
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
previous_nominal_speed = block->nominal_speed;
#if ENABLED(ADVANCE)
// Calculate advance rate // Calculate advance rate
if (!bse || (!bsx && !bsy && !bsz)) { if (!bse || (!bsx && !bsy && !bsz)) {
block->advance_rate = 0; block->advance_rate = 0;
@ -1081,7 +1085,8 @@ void Planner::check_axes_activity() {
SERIAL_ECHOPGM("advance rate :"); SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0); SERIAL_ECHOLN(block->advance_rate/256.0);
*/ */
#endif // ADVANCE
#endif // ADVANCE or LIN_ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);

@ -64,16 +64,16 @@ typedef struct {
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
#if ENABLED(ADVANCE) // Advance extrusion
#if ENABLED(LIN_ADVANCE)
bool use_advance_lead;
int e_speed_multiplier8; // Factorised by 2^8 to avoid float
#elif ENABLED(ADVANCE)
long advance_rate; long advance_rate;
volatile long initial_advance; volatile long initial_advance;
volatile long final_advance; volatile long final_advance;
float advance; float advance;
#endif #endif
#ifdef LIN_ADVANCE
bool use_advance_lead;
int e_speed_multiplier8; //factorised by 2^8 to avoid float
#endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration
float nominal_speed, // The nominal speed for this block in mm/sec float nominal_speed, // The nominal speed for this block in mm/sec

@ -89,14 +89,25 @@ long Stepper::counter_X = 0,
volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
unsigned char Stepper::old_OCR0A; unsigned char Stepper::old_OCR0A;
long Stepper::final_advance = 0, volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
#if ENABLED(LIN_ADVANCE)
volatile int Stepper::e_steps[EXTRUDERS];
int Stepper::extruder_advance_k = LIN_ADVANCE_K,
Stepper::final_estep_rate,
Stepper::current_estep_rate[EXTRUDERS],
Stepper::current_adv_steps[EXTRUDERS];
#else
long Stepper::e_steps[EXTRUDERS],
Stepper::final_advance = 0,
Stepper::old_advance = 0, Stepper::old_advance = 0,
Stepper::e_steps[EXTRUDERS],
Stepper::advance_rate, Stepper::advance_rate,
Stepper::advance; Stepper::advance;
#endif #endif
#endif
long Stepper::acceleration_time, Stepper::deceleration_time; long Stepper::acceleration_time, Stepper::deceleration_time;
@ -344,19 +355,12 @@ void Stepper::isr() {
customizedSerial.checkRx(); // Check for serial chars. customizedSerial.checkRx(); // Check for serial chars.
#endif #endif
#if ENABLED(ADVANCE)
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
}
#endif //ADVANCE
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
counter_E += current_block->steps[E_AXIS]; counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) { if (counter_E > 0) {
counter_E -= current_block->step_event_count; counter_E -= current_block->step_event_count;
count_position[_AXIS(E)] += count_direction[_AXIS(E)]; count_position[E_AXIS] += count_direction[E_AXIS];
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1; e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
} }
@ -366,7 +370,16 @@ void Stepper::isr() {
e_steps[current_block->active_extruder] += delta_adv_steps; e_steps[current_block->active_extruder] += delta_adv_steps;
current_adv_steps[current_block->active_extruder] += delta_adv_steps; current_adv_steps[current_block->active_extruder] += delta_adv_steps;
} }
#endif //LIN_ADVANCE
#elif ENABLED(ADVANCE)
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
}
#endif // ADVANCE or LIN_ADVANCE
#define _COUNTER(AXIS) counter_## AXIS #define _COUNTER(AXIS) counter_## AXIS
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
@ -379,7 +392,7 @@ void Stepper::isr() {
STEP_ADD(X); STEP_ADD(X);
STEP_ADD(Y); STEP_ADD(Y);
STEP_ADD(Z); STEP_ADD(Z);
#if (DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
STEP_ADD(E); STEP_ADD(E);
#endif #endif
@ -393,7 +406,7 @@ void Stepper::isr() {
STEP_IF_COUNTER(X); STEP_IF_COUNTER(X);
STEP_IF_COUNTER(Y); STEP_IF_COUNTER(Y);
STEP_IF_COUNTER(Z); STEP_IF_COUNTER(Z);
#if (DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
STEP_IF_COUNTER(E); STEP_IF_COUNTER(E);
#endif #endif
@ -416,12 +429,11 @@ void Stepper::isr() {
acceleration_time += timer; acceleration_time += timer;
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead){
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8; current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
}
#endif
#if ENABLED(ADVANCE) #elif ENABLED(ADVANCE)
advance += advance_rate * step_loops; advance += advance_rate * step_loops;
//NOLESS(advance, current_block->advance); //NOLESS(advance, current_block->advance);
@ -430,7 +442,8 @@ void Stepper::isr() {
e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance); e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
old_advance = advance >> 8; old_advance = advance >> 8;
#endif //ADVANCE #endif // ADVANCE or LIN_ADVANCE
} }
else if (step_events_completed > (unsigned long)current_block->decelerate_after) { else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
@ -448,12 +461,12 @@ void Stepper::isr() {
deceleration_time += timer; deceleration_time += timer;
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead){
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8; current_estep_rate[current_block->active_extruder] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
}
#endif
#if ENABLED(ADVANCE) #elif ENABLED(ADVANCE)
advance -= advance_rate * step_loops; advance -= advance_rate * step_loops;
NOLESS(advance, final_advance); NOLESS(advance, final_advance);
@ -461,13 +474,13 @@ void Stepper::isr() {
uint32_t advance_whole = advance >> 8; uint32_t advance_whole = advance >> 8;
e_steps[current_block->active_extruder] += advance_whole - old_advance; e_steps[current_block->active_extruder] += advance_whole - old_advance;
old_advance = advance_whole; old_advance = advance_whole;
#endif //ADVANCE
#endif // ADVANCE or LIN_ADVANCE
} }
else { else {
#ifdef LIN_ADVANCE #if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead){ if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = final_estep_rate; current_estep_rate[current_block->active_extruder] = final_estep_rate;
}
#endif #endif
OCR1A = OCR1A_nominal; OCR1A = OCR1A_nominal;
@ -485,12 +498,14 @@ void Stepper::isr() {
} }
} }
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// Timer interrupt for E. e_steps is set in the main routine; // Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies // Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); } ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
void Stepper::advance_isr() { void Stepper::advance_isr() {
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
OCR0A = old_OCR0A; OCR0A = old_OCR0A;
@ -521,58 +536,10 @@ void Stepper::isr() {
#endif #endif
#endif #endif
} }
}
#endif // ADVANCE
#if ENABLED(LIN_ADVANCE)
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect) { stepper.advance_isr(); }
void Stepper::advance_isr() {
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz) war 52
OCR0A = old_OCR0A;
#define STEP_E_ONCE(INDEX) \
if (e_steps[INDEX] != 0) { \
E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
if (e_steps[INDEX] < 0) { \
E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
e_steps[INDEX]++; \
} \
else if (e_steps[INDEX] > 0) { \
E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
e_steps[INDEX]--; \
} \
E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
} }
// Step all E steppers that have steps, up to 4 steps per interrupt #endif // ADVANCE or LIN_ADVANCE
for (unsigned char i = 0; i < 4; i++) {
#if EXTRUDERS > 3
switch(current_block->active_extruder){case 3:STEP_E_ONCE(3);break;case 2:STEP_E_ONCE(2);break;case 1:STEP_E_ONCE(1);break;default:STEP_E_ONCE(0);}
#elif EXTRUDERS > 2
switch(current_block->active_extruder){case 2:STEP_E_ONCE(2);break;case 1:STEP_E_ONCE(1);break;default:STEP_E_ONCE(0);}
#elif EXTRUDERS > 1
#if DISABLED(DUAL_X_CARRIAGE)
if(current_block->active_extruder == 1){STEP_E_ONCE(1)}else{STEP_E_ONCE(0);}
#else
extern bool extruder_duplication_enabled;
if(extruder_duplication_enabled){
STEP_E_ONCE(0);
STEP_E_ONCE(1);
}else {
if(current_block->active_extruder == 1){STEP_E_ONCE(1)}else{STEP_E_ONCE(0);}
}
#endif
#else
STEP_E_ONCE(0);
#endif
}
}
#endif // LIN_ADVANCE
void Stepper::init() { void Stepper::init() {
@ -739,26 +706,28 @@ void Stepper::init() {
TCNT1 = 0; TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
for (int i = 0; i < EXTRUDERS; i++) { for (int i = 0; i < EXTRUDERS; i++) {
e_steps[i] = 0; e_steps[i] = 0;
current_adv_steps[i] = 0; current_adv_steps[i] = 0;
} }
#if defined(TCCR0A) && defined(WGM01)
CBI(TCCR0A, WGM01); #elif ENABLED(ADVANCE)
CBI(TCCR0A, WGM00);
for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
#endif #endif
SBI(TIMSK0, OCIE0A);
#endif //LIN_ADVANCE
#if ENABLED(ADVANCE)
#if defined(TCCR0A) && defined(WGM01) #if defined(TCCR0A) && defined(WGM01)
CBI(TCCR0A, WGM01); CBI(TCCR0A, WGM01);
CBI(TCCR0A, WGM00); CBI(TCCR0A, WGM00);
#endif #endif
for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
SBI(TIMSK0, OCIE0A); SBI(TIMSK0, OCIE0A);
#endif //ADVANCE
#endif // ADVANCE or LIN_ADVANCE
endstops.enable(true); // Start with endstops active. After homing they can be disabled endstops.enable(true); // Start with endstops active. After homing they can be disabled
sei(); sei();
@ -1137,15 +1106,12 @@ void Stepper::microstep_readings() {
} }
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
void Stepper::advance_M905() { void Stepper::advance_M905() {
if (code_seen('K')) extruder_advance_k = code_value(); if (code_seen('K')) extruder_advance_k = code_value();
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Advance factor:"); SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
SERIAL_CHAR(' '); SERIAL_EOL;
SERIAL_ECHOLN(extruder_advance_k);
} }
int Stepper::get_advance_k(){ #endif // LIN_ADVANCE
return extruder_advance_k;
}
#endif

@ -90,14 +90,6 @@ class Stepper {
static bool performing_homing; static bool performing_homing;
#endif #endif
#if ENABLED(ADVANCE)
static long e_steps[EXTRUDERS];
#endif
#if ENABLED(LIN_ADVANCE)
int extruder_advance_k = LIN_K;
#endif
private: private:
static unsigned char last_direction_bits; // The next stepping-bits to be output static unsigned char last_direction_bits; // The next stepping-bits to be output
@ -111,18 +103,23 @@ class Stepper {
static long counter_X, counter_Y, counter_Z, counter_E; static long counter_X, counter_Y, counter_Z, counter_E;
static volatile unsigned long step_events_completed; // The number of step events executed in the current block static volatile unsigned long step_events_completed; // The number of step events executed in the current block
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
static unsigned char old_OCR0A; static unsigned char old_OCR0A;
static long advance_rate, advance, old_advance, final_advance; static volatile unsigned char eISR_Rate;
#endif
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
unsigned char old_OCR0A; static volatile int e_steps[EXTRUDERS];
volatile int e_steps[EXTRUDERS]; static int extruder_advance_k;
int final_estep_rate; static int final_estep_rate;
int current_estep_rate[EXTRUDERS]; //Actual extruder speed [steps/s] static int current_estep_rate[EXTRUDERS]; // Actual extruder speed [steps/s]
int current_adv_steps[EXTRUDERS]; //The amount of current added esteps due to advance. Think of it as the current amount of pressure applied to the spring (=filament). static int current_adv_steps[EXTRUDERS]; // The amount of current added esteps due to advance.
// i.e., the current amount of pressure applied
// to the spring (=filament).
#else
static long e_steps[EXTRUDERS];
static long advance_rate, advance, final_advance;
static long old_advance;
#endif #endif
#endif // ADVANCE or LIN_ADVANCE
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
@ -168,16 +165,10 @@ class Stepper {
static void isr(); static void isr();
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
static void advance_isr(); static void advance_isr();
#endif #endif
#if ENABLED(LIN_ADVANCE)
void advance_isr();
void advance_M905();
int get_advance_k();
#endif
// //
// Block until all buffered steps are executed // Block until all buffered steps are executed
// //
@ -264,6 +255,11 @@ class Stepper {
return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis]; return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis];
} }
#if ENABLED(LIN_ADVANCE)
void advance_M905();
FORCE_INLINE int get_advance_k() { return extruder_advance_k; }
#endif
private: private:
static FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { static FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {

Loading…
Cancel
Save