| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -81,7 +81,7 @@ volatile uint8_t Planner::block_buffer_head = 0;           // Index of the next
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					volatile uint8_t Planner::block_buffer_tail = 0;
 | 
					 | 
					 | 
					 | 
					volatile uint8_t Planner::block_buffer_tail = 0;
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
 | 
					 | 
					 | 
					 | 
					float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					float Planner::axis_steps_per_unit[NUM_AXIS];
 | 
					 | 
					 | 
					 | 
					float Planner::axis_steps_per_mm[NUM_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
 | 
					 | 
					 | 
					 | 
					unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
 | 
					 | 
					 | 
					 | 
					unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
					 | 
					@ -549,10 +549,10 @@ void Planner::check_axes_activity() {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  // Calculate target position in absolute steps
 | 
					 | 
					 | 
					 | 
					  // Calculate target position in absolute steps
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | 
					 | 
					 | 
					 | 
					  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  long target[NUM_AXIS] = {
 | 
					 | 
					 | 
					 | 
					  long target[NUM_AXIS] = {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    lround(x * axis_steps_per_unit[X_AXIS]),
 | 
					 | 
					 | 
					 | 
					    lround(x * axis_steps_per_mm[X_AXIS]),
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    lround(y * axis_steps_per_unit[Y_AXIS]),
 | 
					 | 
					 | 
					 | 
					    lround(y * axis_steps_per_mm[Y_AXIS]),
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    lround(z * axis_steps_per_unit[Z_AXIS]),
 | 
					 | 
					 | 
					 | 
					    lround(z * axis_steps_per_mm[Z_AXIS]),
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    lround(e * axis_steps_per_unit[E_AXIS])
 | 
					 | 
					 | 
					 | 
					    lround(e * axis_steps_per_mm[E_AXIS])
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  };
 | 
					 | 
					 | 
					 | 
					  };
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  long dx = target[X_AXIS] - position[X_AXIS],
 | 
					 | 
					 | 
					 | 
					  long dx = target[X_AXIS] - position[X_AXIS],
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					 | 
					@ -574,7 +574,7 @@ void Planner::check_axes_activity() {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | 
					 | 
					 | 
					 | 
					        SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      }
 | 
					 | 
					 | 
					 | 
					      }
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
 | 
					 | 
					 | 
					 | 
					      #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
 | 
					 | 
					 | 
					 | 
					        if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					          position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | 
					 | 
					 | 
					 | 
					          position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					          de = 0; // no difference
 | 
					 | 
					 | 
					 | 
					          de = 0; // no difference
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					          SERIAL_ECHO_START;
 | 
					 | 
					 | 
					 | 
					          SERIAL_ECHO_START;
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
					 | 
					@ -771,31 +771,31 @@ void Planner::check_axes_activity() {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
 | 
					 | 
					 | 
					 | 
					  #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    float delta_mm[6];
 | 
					 | 
					 | 
					 | 
					    float delta_mm[6];
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    #if ENABLED(COREXY)
 | 
					 | 
					 | 
					 | 
					    #if ENABLED(COREXY)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    #elif ENABLED(COREXZ)
 | 
					 | 
					 | 
					 | 
					    #elif ENABLED(COREXZ)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    #elif ENABLED(COREYZ)
 | 
					 | 
					 | 
					 | 
					    #elif ENABLED(COREYZ)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[X_AXIS] = dx / axis_steps_per_unit[A_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[Y_HEAD] = dy / axis_steps_per_unit[Y_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_unit[B_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_unit[C_AXIS];
 | 
					 | 
					 | 
					 | 
					      delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    #endif
 | 
					 | 
					 | 
					 | 
					    #endif
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  #else
 | 
					 | 
					 | 
					 | 
					  #else
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    float delta_mm[4];
 | 
					 | 
					 | 
					 | 
					    float delta_mm[4];
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
 | 
					 | 
					 | 
					 | 
					    delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
 | 
					 | 
					 | 
					 | 
					    delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
 | 
					 | 
					 | 
					 | 
					    delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  #endif
 | 
					 | 
					 | 
					 | 
					  #endif
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
 | 
					 | 
					 | 
					 | 
					  delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
 | 
					 | 
					 | 
					 | 
					  if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    block->millimeters = fabs(delta_mm[E_AXIS]);
 | 
					 | 
					 | 
					 | 
					    block->millimeters = fabs(delta_mm[E_AXIS]);
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
					 | 
					@ -1127,10 +1127,10 @@ void Planner::check_axes_activity() {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					      apply_rotation_xyz(bed_level_matrix, x, y, z);
 | 
					 | 
					 | 
					 | 
					      apply_rotation_xyz(bed_level_matrix, x, y, z);
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    #endif
 | 
					 | 
					 | 
					 | 
					    #endif
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
 | 
					 | 
					 | 
					 | 
					    long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					         ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
 | 
					 | 
					 | 
					 | 
					         ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					         nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
 | 
					 | 
					 | 
					 | 
					         nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					         ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
 | 
					 | 
					 | 
					 | 
					         ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    stepper.set_position(nx, ny, nz, ne);
 | 
					 | 
					 | 
					 | 
					    stepper.set_position(nx, ny, nz, ne);
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 | 
					 | 
					 | 
					 | 
					    previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					 | 
					@ -1141,14 +1141,14 @@ void Planner::check_axes_activity() {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 * Directly set the planner E position (hence the stepper E position).
 | 
					 | 
					 | 
					 | 
					 * Directly set the planner E position (hence the stepper E position).
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 */
 | 
					 | 
					 | 
					 | 
					 */
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					void Planner::set_e_position_mm(const float& e) {
 | 
					 | 
					 | 
					 | 
					void Planner::set_e_position_mm(const float& e) {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
 | 
					 | 
					 | 
					 | 
					  position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  stepper.set_e_position(position[E_AXIS]);
 | 
					 | 
					 | 
					 | 
					  stepper.set_e_position(position[E_AXIS]);
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					}
 | 
					 | 
					 | 
					 | 
					}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
 | 
					 | 
					 | 
					 | 
					// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					void Planner::reset_acceleration_rates() {
 | 
					 | 
					 | 
					 | 
					void Planner::reset_acceleration_rates() {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  for (int i = 0; i < NUM_AXIS; i++)
 | 
					 | 
					 | 
					 | 
					  for (int i = 0; i < NUM_AXIS; i++)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_unit[i];
 | 
					 | 
					 | 
					 | 
					    max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					}
 | 
					 | 
					 | 
					 | 
					}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					#if ENABLED(AUTOTEMP)
 | 
					 | 
					 | 
					 | 
					#if ENABLED(AUTOTEMP)
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
					 | 
					
 
 |