|
|
@ -596,7 +596,7 @@ static uint8_t target_extruder;
|
|
|
|
|
|
|
|
|
|
|
|
// Initialized by settings.load()
|
|
|
|
// Initialized by settings.load()
|
|
|
|
float delta_radius,
|
|
|
|
float delta_radius,
|
|
|
|
delta_tower_angle_trim[2],
|
|
|
|
delta_tower_angle_trim[ABC],
|
|
|
|
delta_tower[ABC][2],
|
|
|
|
delta_tower[ABC][2],
|
|
|
|
delta_diagonal_rod,
|
|
|
|
delta_diagonal_rod,
|
|
|
|
delta_calibration_radius,
|
|
|
|
delta_calibration_radius,
|
|
|
@ -3093,7 +3093,7 @@ static void homeaxis(const AxisEnum axis) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
do_homing_move(axis, endstop_adj[axis] - 0.1);
|
|
|
|
do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
#else
|
|
|
@ -5333,6 +5333,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Pn Number of probe points:
|
|
|
|
* Pn Number of probe points:
|
|
|
|
*
|
|
|
|
*
|
|
|
|
|
|
|
|
* P0 No probe. Normalize only.
|
|
|
|
* P1 Probe center and set height only.
|
|
|
|
* P1 Probe center and set height only.
|
|
|
|
* P2 Probe center and towers. Set height, endstops, and delta radius.
|
|
|
|
* P2 Probe center and towers. Set height, endstops, and delta radius.
|
|
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
|
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
|
|
@ -5361,7 +5362,7 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
SERIAL_PROTOCOL_F(f, 2);
|
|
|
|
SERIAL_PROTOCOL_F(f, 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
|
|
|
|
inline void print_G33_settings(const bool end_stops, const bool tower_angles){
|
|
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
|
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
|
|
|
if (end_stops) {
|
|
|
|
if (end_stops) {
|
|
|
|
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
|
|
|
|
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
|
|
|
@ -5374,7 +5375,8 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
SERIAL_PROTOCOLPGM(".Tower angle : ");
|
|
|
|
SERIAL_PROTOCOLPGM(".Tower angle : ");
|
|
|
|
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
|
|
|
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
|
|
|
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
|
|
|
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
|
|
|
SERIAL_PROTOCOLLNPGM(" Tz:+0.00");
|
|
|
|
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
|
|
|
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -5396,8 +5398,8 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
inline void gcode_G33() {
|
|
|
|
inline void gcode_G33() {
|
|
|
|
|
|
|
|
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
|
|
|
if (!WITHIN(probe_points, 1, 7)) {
|
|
|
|
if (!WITHIN(probe_points, 0, 7)) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -5421,11 +5423,12 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
|
|
const bool towers_set = parser.boolval('T', true),
|
|
|
|
const bool towers_set = parser.boolval('T', true),
|
|
|
|
stow_after_each = parser.boolval('E'),
|
|
|
|
stow_after_each = parser.boolval('E'),
|
|
|
|
|
|
|
|
_0p_calibration = probe_points == 0,
|
|
|
|
_1p_calibration = probe_points == 1,
|
|
|
|
_1p_calibration = probe_points == 1,
|
|
|
|
_4p_calibration = probe_points == 2,
|
|
|
|
_4p_calibration = probe_points == 2,
|
|
|
|
_4p_towers_points = _4p_calibration && towers_set,
|
|
|
|
_4p_towers_points = _4p_calibration && towers_set,
|
|
|
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
|
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
|
|
_7p_calibration = probe_points >= 3,
|
|
|
|
_7p_calibration = probe_points >= 3 || _0p_calibration,
|
|
|
|
_7p_half_circle = probe_points == 3,
|
|
|
|
_7p_half_circle = probe_points == 3,
|
|
|
|
_7p_double_circle = probe_points == 5,
|
|
|
|
_7p_double_circle = probe_points == 5,
|
|
|
|
_7p_triple_circle = probe_points == 6,
|
|
|
|
_7p_triple_circle = probe_points == 6,
|
|
|
@ -5440,17 +5443,20 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
|
|
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
|
|
zero_std_dev_old = zero_std_dev,
|
|
|
|
zero_std_dev_old = zero_std_dev,
|
|
|
|
zero_std_dev_min = zero_std_dev,
|
|
|
|
zero_std_dev_min = zero_std_dev,
|
|
|
|
e_old[XYZ] = {
|
|
|
|
e_old[ABC] = {
|
|
|
|
endstop_adj[A_AXIS],
|
|
|
|
endstop_adj[A_AXIS],
|
|
|
|
endstop_adj[B_AXIS],
|
|
|
|
endstop_adj[B_AXIS],
|
|
|
|
endstop_adj[C_AXIS]
|
|
|
|
endstop_adj[C_AXIS]
|
|
|
|
},
|
|
|
|
},
|
|
|
|
dr_old = delta_radius,
|
|
|
|
dr_old = delta_radius,
|
|
|
|
zh_old = home_offset[Z_AXIS],
|
|
|
|
zh_old = home_offset[Z_AXIS],
|
|
|
|
alpha_old = delta_tower_angle_trim[A_AXIS],
|
|
|
|
ta_old[ABC] = {
|
|
|
|
beta_old = delta_tower_angle_trim[B_AXIS];
|
|
|
|
delta_tower_angle_trim[A_AXIS],
|
|
|
|
|
|
|
|
delta_tower_angle_trim[B_AXIS],
|
|
|
|
|
|
|
|
delta_tower_angle_trim[C_AXIS]
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
if (!_1p_calibration) { // test if the outer radius is reachable
|
|
|
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
|
|
const float circles = (_7p_quadruple_circle ? 1.5 :
|
|
|
|
const float circles = (_7p_quadruple_circle ? 1.5 :
|
|
|
|
_7p_triple_circle ? 1.0 :
|
|
|
|
_7p_triple_circle ? 1.0 :
|
|
|
|
_7p_double_circle ? 0.5 : 0),
|
|
|
|
_7p_double_circle ? 0.5 : 0),
|
|
|
@ -5480,9 +5486,11 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
|
|
|
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
endstops.enable(true);
|
|
|
|
endstops.enable(true);
|
|
|
|
if (!home_delta())
|
|
|
|
if (!_0p_calibration) {
|
|
|
|
return;
|
|
|
|
if (!home_delta())
|
|
|
|
endstops.not_homing();
|
|
|
|
return;
|
|
|
|
|
|
|
|
endstops.not_homing();
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// print settings
|
|
|
|
// print settings
|
|
|
|
|
|
|
|
|
|
|
@ -5495,9 +5503,11 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
|
|
|
|
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
|
|
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
|
|
|
if (!_0p_calibration) {
|
|
|
|
if (isnan(measured_z)) return G33_CLEANUP();
|
|
|
|
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
|
|
|
home_offset[Z_AXIS] -= measured_z;
|
|
|
|
if (isnan(measured_z)) return G33_CLEANUP();
|
|
|
|
|
|
|
|
home_offset[Z_AXIS] -= measured_z;
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
do {
|
|
|
@ -5505,58 +5515,60 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
float z_at_pt[13] = { 0.0 };
|
|
|
|
float z_at_pt[13] = { 0.0 };
|
|
|
|
|
|
|
|
|
|
|
|
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
|
|
|
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
|
|
|
|
|
|
|
if (_0p_calibration) test_precision = 0.00;
|
|
|
|
iterations++;
|
|
|
|
iterations++;
|
|
|
|
|
|
|
|
|
|
|
|
// Probe the points
|
|
|
|
// Probe the points
|
|
|
|
|
|
|
|
|
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
if (!_0p_calibration){
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
|
|
|
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
|
|
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
|
|
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
z_at_pt[0] += lcd_probe_pt(0, 0);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
}
|
|
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
|
|
|
bool zig_zag = true;
|
|
|
|
|
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
|
|
|
|
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
|
|
|
|
|
|
|
for (uint8_t axis = start; axis < 13; axis += step) {
|
|
|
|
|
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0),
|
|
|
|
|
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
|
|
|
|
|
|
|
_7p_triple_circle ? zigadd + 0.5 :
|
|
|
|
|
|
|
|
_7p_double_circle ? zigadd : 0;
|
|
|
|
|
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
|
|
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis),
|
|
|
|
|
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
|
|
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
zig_zag = !zig_zag;
|
|
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!_1p_calibration) { // probe the radius
|
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
bool zig_zag = true;
|
|
|
|
for (uint8_t axis = 1; axis < 13; axis += 2)
|
|
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
|
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
|
|
|
|
|
|
|
for (uint8_t axis = start; axis < 13; axis += step) {
|
|
|
|
|
|
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0),
|
|
|
|
|
|
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
|
|
|
|
|
|
|
_7p_triple_circle ? zigadd + 0.5 :
|
|
|
|
|
|
|
|
_7p_double_circle ? zigadd : 0;
|
|
|
|
|
|
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
|
|
|
|
|
|
|
const float a = RADIANS(180 + 30 * axis),
|
|
|
|
|
|
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
|
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
|
|
|
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
zig_zag = !zig_zag;
|
|
|
|
|
|
|
|
z_at_pt[axis] /= (2 * offset_circles + 1);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
|
|
|
|
|
|
for (uint8_t axis = 1; axis < 13; axis += 2)
|
|
|
|
|
|
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
float S1 = z_at_pt[0],
|
|
|
|
float S1 = z_at_pt[0],
|
|
|
|
S2 = sq(z_at_pt[0]);
|
|
|
|
S2 = sq(z_at_pt[0]);
|
|
|
|
int16_t N = 1;
|
|
|
|
int16_t N = 1;
|
|
|
@ -5576,27 +5588,22 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
COPY(e_old, endstop_adj);
|
|
|
|
COPY(e_old, endstop_adj);
|
|
|
|
dr_old = delta_radius;
|
|
|
|
dr_old = delta_radius;
|
|
|
|
zh_old = home_offset[Z_AXIS];
|
|
|
|
zh_old = home_offset[Z_AXIS];
|
|
|
|
alpha_old = delta_tower_angle_trim[A_AXIS];
|
|
|
|
COPY(ta_old, delta_tower_angle_trim);
|
|
|
|
beta_old = delta_tower_angle_trim[B_AXIS];
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
|
|
|
|
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
|
|
|
|
const float r_diff = delta_radius - delta_calibration_radius,
|
|
|
|
float r_diff = delta_radius - delta_calibration_radius,
|
|
|
|
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
|
|
|
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
|
|
|
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
|
|
|
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
|
|
|
a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
|
|
|
|
a_factor = 66.66 / delta_calibration_radius; //0.83 for cal_rd = 80mm
|
|
|
|
|
|
|
|
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
|
|
#define Z1000(I) ZP(1.00, I)
|
|
|
|
#define Z6(I) ZP(6, I)
|
|
|
|
#define Z1050(I) ZP(h_factor, I)
|
|
|
|
#define Z4(I) ZP(4, I)
|
|
|
|
#define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
|
|
|
|
#define Z2(I) ZP(2, I)
|
|
|
|
#define Z0350(I) ZP(h_factor / 3.00, I)
|
|
|
|
#define Z1(I) ZP(1, I)
|
|
|
|
#define Z0175(I) ZP(h_factor / 6.00, I)
|
|
|
|
h_factor /= 6.00;
|
|
|
|
#define Z2250(I) ZP(r_factor, I)
|
|
|
|
r_factor /= 6.00;
|
|
|
|
#define Z0750(I) ZP(r_factor / 3.00, I)
|
|
|
|
|
|
|
|
#define Z0375(I) ZP(r_factor / 6.00, I)
|
|
|
|
|
|
|
|
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
|
|
|
|
|
|
|
|
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
@ -5605,58 +5612,61 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
switch (probe_points) {
|
|
|
|
switch (probe_points) {
|
|
|
|
case 1:
|
|
|
|
case 1:
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
test_precision = 0.00; // forced end
|
|
|
|
LOOP_XYZ(i) e_delta[i] = Z1000(0);
|
|
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(0);
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
case 2:
|
|
|
|
case 2:
|
|
|
|
if (towers_set) {
|
|
|
|
if (towers_set) {
|
|
|
|
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
|
|
|
|
e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
|
|
|
|
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
|
|
|
|
e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
|
|
|
|
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
|
|
|
|
e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
|
|
|
|
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
|
|
|
|
r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
|
|
|
|
e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
|
|
|
|
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
|
|
|
|
e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
|
|
|
|
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
|
|
|
|
e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
|
|
|
|
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
|
|
|
|
r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
|
|
default:
|
|
|
|
default:
|
|
|
|
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
|
|
|
|
e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
|
|
|
|
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
|
|
|
|
e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
|
|
|
|
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
|
|
|
|
e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
|
|
|
|
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
|
|
|
|
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
|
|
|
|
|
|
|
|
|
|
|
|
if (towers_set) {
|
|
|
|
if (towers_set) {
|
|
|
|
t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
|
|
|
|
t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor;
|
|
|
|
t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
|
|
|
|
t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor;
|
|
|
|
|
|
|
|
t_delta[C_AXIS] = (-Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
|
|
|
delta_radius += r_delta;
|
|
|
|
delta_radius += r_delta;
|
|
|
|
delta_tower_angle_trim[A_AXIS] += t_alpha;
|
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
|
|
|
|
delta_tower_angle_trim[B_AXIS] += t_beta;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
|
|
|
|
|
|
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
|
|
|
|
|
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
|
|
|
|
|
|
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (zero_std_dev >= test_precision) { // step one back
|
|
|
|
else if (zero_std_dev >= test_precision) { // step one back
|
|
|
|
COPY(endstop_adj, e_old);
|
|
|
|
COPY(endstop_adj, e_old);
|
|
|
|
delta_radius = dr_old;
|
|
|
|
delta_radius = dr_old;
|
|
|
|
home_offset[Z_AXIS] = zh_old;
|
|
|
|
home_offset[Z_AXIS] = zh_old;
|
|
|
|
delta_tower_angle_trim[A_AXIS] = alpha_old;
|
|
|
|
COPY(delta_tower_angle_trim, ta_old);
|
|
|
|
delta_tower_angle_trim[B_AXIS] = beta_old;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
|
|
|
|
|
|
// normalise angles to least squares
|
|
|
|
|
|
|
|
float a_sum = 0.0;
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
|
|
|
|
|
|
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
|
|
|
|
|
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
|
|
|
|
|
|
|
|
// print report
|
|
|
|
// print report
|
|
|
@ -8538,11 +8548,8 @@ inline void gcode_M205() {
|
|
|
|
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
|
|
|
|
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
|
|
|
|
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
|
|
|
if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
|
|
|
|
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
|
|
|
|
delta_tower_angle_trim[A_AXIS] -= parser.value_float();
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
|
|
delta_tower_angle_trim[B_AXIS] -= parser.value_float();
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
|
|
/**
|
|
|
|
* M666: Set delta endstop adjustment
|
|
|
|
* M666: Set delta endstop adjustment
|
|
|
@ -8555,7 +8562,8 @@ inline void gcode_M205() {
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
LOOP_XYZ(i) {
|
|
|
|
LOOP_XYZ(i) {
|
|
|
|
if (parser.seen(axis_codes[i])) {
|
|
|
|
if (parser.seen(axis_codes[i])) {
|
|
|
|
endstop_adj[i] = parser.value_linear_units();
|
|
|
|
if (parser.value_linear_units() * Z_HOME_DIR <= 0)
|
|
|
|
|
|
|
|
endstop_adj[i] = parser.value_linear_units();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
if (DEBUGGING(LEVELING)) {
|
|
|
|
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
|
|
|
|
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
|
|
|
@ -8569,10 +8577,6 @@ inline void gcode_M205() {
|
|
|
|
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
|
|
|
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// normalize endstops so all are <=0; set the residue to delta height
|
|
|
|
|
|
|
|
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
|
|
|
|
|
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
|
|
|
|
|
|
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#elif IS_SCARA
|
|
|
|
#elif IS_SCARA
|
|
|
@ -11830,15 +11834,15 @@ void ok_to_send() {
|
|
|
|
* Recalculate factors used for delta kinematics whenever
|
|
|
|
* Recalculate factors used for delta kinematics whenever
|
|
|
|
* settings have been changed (e.g., by M665).
|
|
|
|
* settings have been changed (e.g., by M665).
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
|
|
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
|
|
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
|
|
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
|
|
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
|
|
|
|
delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
|
|
|
|
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
|
|
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
|
|
|
|