min_pos/max_pos => sw_endstop_min/sw_endstop_max

master
Scott Lahteine 9 years ago
parent 5cb8ec68ae
commit 78747b1328

@ -275,8 +275,8 @@ extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in m
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS]; extern float current_position[NUM_AXIS];
extern float home_offset[3]; // axis[n].home_offset extern float home_offset[3]; // axis[n].home_offset
extern float min_pos[3]; // axis[n].min_pos extern float sw_endstop_min[3]; // axis[n].sw_endstop_min
extern float max_pos[3]; // axis[n].max_pos extern float sw_endstop_max[3]; // axis[n].sw_endstop_max
extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_known_position[3]; // axis[n].is_known
extern bool axis_homed[3]; // axis[n].is_homed extern bool axis_homed[3]; // axis[n].is_homed

@ -286,8 +286,10 @@ float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
float position_shift[3] = { 0 }; float position_shift[3] = { 0 };
float home_offset[3] = { 0 }; float home_offset[3] = { 0 };
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; // Software Endstops. Default to configured limits.
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
#if FAN_COUNT > 0 #if FAN_COUNT > 0
int fanSpeeds[FAN_COUNT] = { 0 }; int fanSpeeds[FAN_COUNT] = { 0 };
@ -1212,24 +1214,32 @@ static void update_software_endstops(AxisEnum axis) {
if (axis == X_AXIS) { if (axis == X_AXIS) {
float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS); float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
if (active_extruder != 0) { if (active_extruder != 0) {
min_pos[X_AXIS] = X2_MIN_POS + offs; sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
max_pos[X_AXIS] = dual_max_x + offs; sw_endstop_max[X_AXIS] = dual_max_x + offs;
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
min_pos[X_AXIS] = base_min_pos(X_AXIS) + offs; sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
max_pos[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs; sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
return; return;
} }
} }
else else
#endif #endif
{ {
min_pos[axis] = base_min_pos(axis) + offs; sw_endstop_min[axis] = base_min_pos(axis) + offs;
max_pos[axis] = base_max_pos(axis) + offs; sw_endstop_max[axis] = base_max_pos(axis) + offs;
} }
} }
/**
* Change the home offset for an axis, update the current
* position and the software endstops to retain the same
* relative distance to the new home.
*
* Since this changes the current_position, code should
* call sync_plan_position soon after this.
*/
static void set_home_offset(AxisEnum axis, float v) { static void set_home_offset(AxisEnum axis, float v) {
current_position[axis] += v - home_offset[axis]; current_position[axis] += v - home_offset[axis];
home_offset[axis] = v; home_offset[axis] = v;
@ -1294,8 +1304,8 @@ static void set_axis_is_at_home(AxisEnum axis) {
* SCARA home positions are based on configuration since the actual * SCARA home positions are based on configuration since the actual
* limits are determined by the inverse kinematic transform. * limits are determined by the inverse kinematic transform.
*/ */
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis)); sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis)); sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
} }
else else
#endif #endif
@ -5842,7 +5852,7 @@ inline void gcode_M428() {
bool err = false; bool err = false;
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (axis_homed[i]) { if (axis_homed[i]) {
float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0, float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
diff = current_position[i] - base; diff = current_position[i] - base;
if (diff > -20 && diff < 20) { if (diff > -20 && diff < 20) {
set_home_offset((AxisEnum)i, home_offset[i] - diff); set_home_offset((AxisEnum)i, home_offset[i] - diff);
@ -7032,8 +7042,8 @@ void ok_to_send() {
void clamp_to_software_endstops(float target[3]) { void clamp_to_software_endstops(float target[3]) {
if (min_software_endstops) { if (min_software_endstops) {
NOLESS(target[X_AXIS], min_pos[X_AXIS]); NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
NOLESS(target[Y_AXIS], min_pos[Y_AXIS]); NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
float negative_z_offset = 0; float negative_z_offset = 0;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
@ -7048,13 +7058,13 @@ void clamp_to_software_endstops(float target[3]) {
negative_z_offset += home_offset[Z_AXIS]; negative_z_offset += home_offset[Z_AXIS];
} }
#endif #endif
NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset); NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
} }
if (max_software_endstops) { if (max_software_endstops) {
NOMORE(target[X_AXIS], max_pos[X_AXIS]); NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
NOMORE(target[Y_AXIS], max_pos[Y_AXIS]); NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
NOMORE(target[Z_AXIS], max_pos[Z_AXIS]); NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
} }
} }

@ -1167,13 +1167,13 @@ static void _lcd_move(const char* name, AxisEnum axis, float min, float max) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS); static float delta_clip_radius_2 = (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS);
static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); } static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); }
static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move(PSTR(MSG_MOVE_X), X_AXIS, max(min_pos[X_AXIS], -clip), min(max_pos[X_AXIS], clip)); } static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move(PSTR(MSG_MOVE_Y), Y_AXIS, max(min_pos[Y_AXIS], -clip), min(max_pos[Y_AXIS], clip)); } static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
#else #else
static void lcd_move_x() { _lcd_move(PSTR(MSG_MOVE_X), X_AXIS, min_pos[X_AXIS], max_pos[X_AXIS]); } static void lcd_move_x() { _lcd_move(PSTR(MSG_MOVE_X), X_AXIS, sw_endstop_min[X_AXIS], sw_endstop_max[X_AXIS]); }
static void lcd_move_y() { _lcd_move(PSTR(MSG_MOVE_Y), Y_AXIS, min_pos[Y_AXIS], max_pos[Y_AXIS]); } static void lcd_move_y() { _lcd_move(PSTR(MSG_MOVE_Y), Y_AXIS, sw_endstop_min[Y_AXIS], sw_endstop_max[Y_AXIS]); }
#endif #endif
static void lcd_move_z() { _lcd_move(PSTR(MSG_MOVE_Z), Z_AXIS, min_pos[Z_AXIS], max_pos[Z_AXIS]); } static void lcd_move_z() { _lcd_move(PSTR(MSG_MOVE_Z), Z_AXIS, sw_endstop_min[Z_AXIS], sw_endstop_max[Z_AXIS]); }
static void lcd_move_e( static void lcd_move_e(
#if EXTRUDERS > 1 #if EXTRUDERS > 1
uint8_t e uint8_t e

Loading…
Cancel
Save