Apply static to Temperature class

master
Scott Lahteine 9 years ago
parent c3df293fc6
commit 78fb02a5ad

@ -48,6 +48,145 @@
Temperature thermalManager; Temperature thermalManager;
// public:
int Temperature::current_temperature_raw[EXTRUDERS] = { 0 };
float Temperature::current_temperature[EXTRUDERS] = { 0.0 };
int Temperature::target_temperature[EXTRUDERS] = { 0 };
int Temperature::current_temperature_bed_raw = 0;
float Temperature::current_temperature_bed = 0.0;
int Temperature::target_temperature_bed = 0;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
float Temperature::redundant_temperature = 0.0;
#endif
unsigned char Temperature::soft_pwm_bed;
#if ENABLED(FAN_SOFT_PWM)
unsigned char Temperature::fanSpeedSoftPwm[FAN_COUNT];
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
float Temperature::Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kp),
Temperature::Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Ki) * (PID_dT)),
Temperature::Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Kd) / (PID_dT));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kc);
#endif
#else
float Temperature::Kp = DEFAULT_Kp,
Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::Kc = DEFAULT_Kc;
#endif
#endif
#endif
#if ENABLED(PIDTEMPBED)
float Temperature::bedKp = DEFAULT_bedKp,
Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
#endif
#if ENABLED(BABYSTEPPING)
volatile int Temperature::babystepsTodo[3] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
int Temperature::watch_target_temp[EXTRUDERS] = { 0 };
millis_t Temperature::watch_heater_next_ms[EXTRUDERS] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0
int Temperature::watch_target_bed_temp = 0;
millis_t Temperature::watch_bed_next_ms = 0;
#endif
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
#endif
// private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
int Temperature::redundant_temperature_raw = 0;
float Temperature::redundant_temperature = 0.0;
#endif
volatile bool Temperature::temp_meas_ready = false;
#if ENABLED(PIDTEMP)
float Temperature::temp_iState[EXTRUDERS] = { 0 };
float Temperature::temp_dState[EXTRUDERS] = { 0 };
float Temperature::pTerm[EXTRUDERS];
float Temperature::iTerm[EXTRUDERS];
float Temperature::dTerm[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::cTerm[EXTRUDERS];
long Temperature::last_position[EXTRUDERS];
long Temperature::lpq[LPQ_MAX_LEN];
int Temperature::lpq_ptr = 0;
#endif
float Temperature::pid_error[EXTRUDERS];
float Temperature::temp_iState_min[EXTRUDERS];
float Temperature::temp_iState_max[EXTRUDERS];
bool Temperature::pid_reset[EXTRUDERS];
#endif
#if ENABLED(PIDTEMPBED)
float Temperature::temp_iState_bed = { 0 };
float Temperature::temp_dState_bed = { 0 };
float Temperature::pTerm_bed;
float Temperature::iTerm_bed;
float Temperature::dTerm_bed;
float Temperature::pid_error_bed;
float Temperature::temp_iState_min_bed;
float Temperature::temp_iState_max_bed;
#else
millis_t Temperature::next_bed_check_ms;
#endif
unsigned long Temperature::raw_temp_value[4] = { 0 };
unsigned long Temperature::raw_temp_bed_value = 0;
// Init min and max temp with extreme values to prevent false errors during startup
int Temperature::minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
int Temperature::maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
int Temperature::minttemp[EXTRUDERS] = { 0 };
int Temperature::maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
#ifdef BED_MINTEMP
int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int Temperature::meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
millis_t Temperature::next_auto_fan_check_ms;
#endif
unsigned char Temperature::soft_pwm[EXTRUDERS];
#if ENABLED(FAN_SOFT_PWM)
unsigned char Temperature::soft_pwm_fan[FAN_COUNT];
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif
#if HAS_PID_HEATING #if HAS_PID_HEATING
void Temperature::PID_autotune(float temp, int extruder, int ncycles, bool set_result/*=false*/) { void Temperature::PID_autotune(float temp, int extruder, int ncycles, bool set_result/*=false*/) {
@ -283,31 +422,9 @@ Temperature thermalManager;
#endif // HAS_PID_HEATING #endif // HAS_PID_HEATING
#if ENABLED(PIDTEMP) /**
* Class and Instance Methods
#if ENABLED(PID_PARAMS_PER_EXTRUDER) */
float Temperature::Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kp),
Temperature::Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Ki) * (PID_dT)),
Temperature::Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Kd) / (PID_dT));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kc);
#endif
#else
float Temperature::Kp = DEFAULT_Kp,
Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::Kc = DEFAULT_Kc;
#endif
#endif
#endif
Temperature::Temperature() { } Temperature::Temperature() { }
@ -1045,7 +1162,17 @@ void Temperature::init() {
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
void Temperature::thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { #if ENABLED(THERMAL_PROTECTION_HOTENDS)
Temperature::TRState Temperature::thermal_runaway_state_machine[EXTRUDERS] = { TRInactive };
millis_t Temperature::thermal_runaway_timer[EXTRUDERS] = { 0 };
#endif
#if HAS_THERMALLY_PROTECTED_BED
Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
millis_t Temperature::thermal_runaway_bed_timer;
#endif
void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
static float tr_target_temperature[EXTRUDERS + 1] = { 0.0 }; static float tr_target_temperature[EXTRUDERS + 1] = { 0.0 };
@ -1240,7 +1367,7 @@ void Temperature::set_current_temp_raw() {
* - Check new temperature values for MIN/MAX errors * - Check new temperature values for MIN/MAX errors
* - Step the babysteps value for each axis towards 0 * - Step the babysteps value for each axis towards 0
*/ */
ISR(TIMER0_COMPB_vect) { thermalManager.isr(); } ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
void Temperature::isr() { void Temperature::isr() {

@ -42,22 +42,22 @@ class Temperature {
public: public:
int current_temperature_raw[EXTRUDERS] = { 0 }; static int current_temperature_raw[EXTRUDERS];
float current_temperature[EXTRUDERS] = { 0.0 }; static float current_temperature[EXTRUDERS];
int target_temperature[EXTRUDERS] = { 0 }; static int target_temperature[EXTRUDERS];
int current_temperature_bed_raw = 0; static int current_temperature_bed_raw;
float current_temperature_bed = 0.0; static float current_temperature_bed;
int target_temperature_bed = 0; static int target_temperature_bed;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
float redundant_temperature = 0.0; static float redundant_temperature;
#endif #endif
unsigned char soft_pwm_bed; static unsigned char soft_pwm_bed;
#if ENABLED(FAN_SOFT_PWM) #if ENABLED(FAN_SOFT_PWM)
unsigned char fanSpeedSoftPwm[FAN_COUNT]; static unsigned char fanSpeedSoftPwm[FAN_COUNT];
#endif #endif
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
@ -70,7 +70,7 @@ class Temperature {
static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS]; static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE) #if ENABLED(PID_ADD_EXTRUSION_RATE)
float Kc[EXTRUDERS]; static float Kc[EXTRUDERS];
#endif #endif
#define PID_PARAM(param, e) Temperature::param[e] #define PID_PARAM(param, e) Temperature::param[e]
@ -93,117 +93,109 @@ class Temperature {
#endif #endif
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
float bedKp = DEFAULT_bedKp, static float bedKp, bedKi, bedKd;
bedKi = ((DEFAULT_bedKi) * PID_dT),
bedKd = ((DEFAULT_bedKd) / PID_dT);
#endif #endif
#if ENABLED(BABYSTEPPING) #if ENABLED(BABYSTEPPING)
volatile int babystepsTodo[3] = { 0 }; static volatile int babystepsTodo[3];
#endif #endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
int watch_target_temp[EXTRUDERS] = { 0 }; static int watch_target_temp[EXTRUDERS];
millis_t watch_heater_next_ms[EXTRUDERS] = { 0 }; static millis_t watch_heater_next_ms[EXTRUDERS];
#endif #endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0
int watch_target_bed_temp = 0; static int watch_target_bed_temp;
millis_t watch_bed_next_ms = 0; static millis_t watch_bed_next_ms;
#endif #endif
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE) #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
float extrude_min_temp = EXTRUDE_MINTEMP; static float extrude_min_temp;
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; } static FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
#else #else
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; } static FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
#endif #endif
private: private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
int redundant_temperature_raw = 0; static int redundant_temperature_raw;
float redundant_temperature = 0.0; static float redundant_temperature;
#endif #endif
volatile bool temp_meas_ready = false; static volatile bool temp_meas_ready;
#if ENABLED(PIDTEMP) #if ENABLED(PIDTEMP)
float temp_iState[EXTRUDERS] = { 0 }; static float temp_iState[EXTRUDERS];
float temp_dState[EXTRUDERS] = { 0 }; static float temp_dState[EXTRUDERS];
float pTerm[EXTRUDERS]; static float pTerm[EXTRUDERS];
float iTerm[EXTRUDERS]; static float iTerm[EXTRUDERS];
float dTerm[EXTRUDERS]; static float dTerm[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE) #if ENABLED(PID_ADD_EXTRUSION_RATE)
float cTerm[EXTRUDERS]; static float cTerm[EXTRUDERS];
long last_position[EXTRUDERS]; static long last_position[EXTRUDERS];
long lpq[LPQ_MAX_LEN]; static long lpq[LPQ_MAX_LEN];
int lpq_ptr = 0; static int lpq_ptr;
#endif #endif
float pid_error[EXTRUDERS]; static float pid_error[EXTRUDERS];
float temp_iState_min[EXTRUDERS]; static float temp_iState_min[EXTRUDERS];
float temp_iState_max[EXTRUDERS]; static float temp_iState_max[EXTRUDERS];
bool pid_reset[EXTRUDERS]; static bool pid_reset[EXTRUDERS];
#endif #endif
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
float temp_iState_bed = { 0 }; static float temp_iState_bed;
float temp_dState_bed = { 0 }; static float temp_dState_bed;
float pTerm_bed; static float pTerm_bed;
float iTerm_bed; static float iTerm_bed;
float dTerm_bed; static float dTerm_bed;
float pid_error_bed; static float pid_error_bed;
float temp_iState_min_bed; static float temp_iState_min_bed;
float temp_iState_max_bed; static float temp_iState_max_bed;
#else #else
millis_t next_bed_check_ms; static millis_t next_bed_check_ms;
#endif #endif
unsigned long raw_temp_value[4] = { 0 }; static unsigned long raw_temp_value[4];
unsigned long raw_temp_bed_value = 0; static unsigned long raw_temp_bed_value;
// Init min and max temp with extreme values to prevent false errors during startup // Init min and max temp with extreme values to prevent false errors during startup
int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP); static int minttemp_raw[EXTRUDERS];
int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP); static int maxttemp_raw[EXTRUDERS];
int minttemp[EXTRUDERS] = { 0 }; static int minttemp[EXTRUDERS];
int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383); static int maxttemp[EXTRUDERS];
#ifdef BED_MINTEMP #ifdef BED_MINTEMP
int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; static int bed_minttemp_raw;
#endif #endif
#ifdef BED_MAXTEMP #ifdef BED_MAXTEMP
int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; static int bed_maxttemp_raw;
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
int meas_shift_index; // Index of a delayed sample in buffer static int meas_shift_index; // Index of a delayed sample in buffer
#endif #endif
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
millis_t next_auto_fan_check_ms; static millis_t next_auto_fan_check_ms;
#endif #endif
unsigned char soft_pwm[EXTRUDERS]; static unsigned char soft_pwm[EXTRUDERS];
#if ENABLED(FAN_SOFT_PWM) #if ENABLED(FAN_SOFT_PWM)
unsigned char soft_pwm_fan[FAN_COUNT]; static unsigned char soft_pwm_fan[FAN_COUNT];
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only static int current_raw_filwidth; //Holds measured filament diameter - one extruder only
#endif #endif
public: public:
/**
* Static (class) methods
*/
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
/** /**
* Instance Methods * Instance Methods
*/ */
@ -212,19 +204,25 @@ class Temperature {
void init(); void init();
/**
* Static (class) methods
*/
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
/** /**
* Called from the Temperature ISR * Called from the Temperature ISR
*/ */
void isr(); static void isr();
/** /**
* Call periodically to manage heaters * Call periodically to manage heaters
*/ */
void manage_heater(); static void manage_heater();
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
float analog2widthFil(); // Convert raw Filament Width to millimeters static float analog2widthFil(); // Convert raw Filament Width to millimeters
int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
#endif #endif
@ -232,68 +230,68 @@ class Temperature {
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; } static FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
FORCE_INLINE float degBed() { return current_temperature_bed; } static FORCE_INLINE float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; } static FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; } static FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif #endif
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; } static FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
FORCE_INLINE float degTargetBed() { return target_temperature_bed; } static FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
void start_watching_heater(int e = 0); static void start_watching_heater(int e = 0);
#endif #endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
void start_watching_bed(); static void start_watching_bed();
#endif #endif
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) { static FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
target_temperature[extruder] = celsius; target_temperature[extruder] = celsius;
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
start_watching_heater(extruder); start_watching_heater(extruder);
#endif #endif
} }
FORCE_INLINE void setTargetBed(const float& celsius) { static FORCE_INLINE void setTargetBed(const float& celsius) {
target_temperature_bed = celsius; target_temperature_bed = celsius;
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
start_watching_bed(); start_watching_bed();
#endif #endif
} }
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; } static FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; } static FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; } static FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; } static FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
/** /**
* The software PWM power for a heater * The software PWM power for a heater
*/ */
int getHeaterPower(int heater); static int getHeaterPower(int heater);
/** /**
* Switch off all heaters, set all target temperatures to 0 * Switch off all heaters, set all target temperatures to 0
*/ */
void disable_all_heaters(); static void disable_all_heaters();
/** /**
* Perform auto-tuning for hotend or bed in response to M303 * Perform auto-tuning for hotend or bed in response to M303
*/ */
#if HAS_PID_HEATING #if HAS_PID_HEATING
void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false); static void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false);
#endif #endif
/** /**
* Update the temp manager when PID values change * Update the temp manager when PID values change
*/ */
void updatePID(); static void updatePID();
FORCE_INLINE void autotempShutdown() { static FORCE_INLINE void autotempShutdown() {
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
if (planner.autotemp_enabled) { if (planner.autotemp_enabled) {
planner.autotemp_enabled = false; planner.autotemp_enabled = false;
@ -305,7 +303,7 @@ class Temperature {
#if ENABLED(BABYSTEPPING) #if ENABLED(BABYSTEPPING)
FORCE_INLINE void babystep_axis(AxisEnum axis, int distance) { static FORCE_INLINE void babystep_axis(AxisEnum axis, int distance) {
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ) #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
#if ENABLED(BABYSTEP_XY) #if ENABLED(BABYSTEP_XY)
switch (axis) { switch (axis) {
@ -337,40 +335,40 @@ class Temperature {
private: private:
void set_current_temp_raw(); static void set_current_temp_raw();
void updateTemperaturesFromRawValues(); static void updateTemperaturesFromRawValues();
#if ENABLED(HEATER_0_USES_MAX6675) #if ENABLED(HEATER_0_USES_MAX6675)
int read_max6675(); static int read_max6675();
#endif #endif
void checkExtruderAutoFans(); static void checkExtruderAutoFans();
float get_pid_output(int e); static float get_pid_output(int e);
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
float get_pid_output_bed(); static float get_pid_output_bed();
#endif #endif
void _temp_error(int e, const char* serial_msg, const char* lcd_msg); static void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
void min_temp_error(uint8_t e); static void min_temp_error(uint8_t e);
void max_temp_error(uint8_t e); static void max_temp_error(uint8_t e);
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate; typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc); static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if ENABLED(THERMAL_PROTECTION_HOTENDS) #if ENABLED(THERMAL_PROTECTION_HOTENDS)
TRState thermal_runaway_state_machine[EXTRUDERS] = { TRInactive }; static TRState thermal_runaway_state_machine[EXTRUDERS];
millis_t thermal_runaway_timer[EXTRUDERS] = { 0 }; static millis_t thermal_runaway_timer[EXTRUDERS];
#endif #endif
#if HAS_THERMALLY_PROTECTED_BED #if HAS_THERMALLY_PROTECTED_BED
TRState thermal_runaway_bed_state_machine = TRInactive; static TRState thermal_runaway_bed_state_machine;
millis_t thermal_runaway_bed_timer; static millis_t thermal_runaway_bed_timer;
#endif #endif
#endif // THERMAL_PROTECTION #endif // THERMAL_PROTECTION

Loading…
Cancel
Save