|
|
@ -8092,68 +8092,78 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
* This calls planner.buffer_line several times, adding
|
|
|
|
* This calls planner.buffer_line several times, adding
|
|
|
|
* small incremental moves for DELTA or SCARA.
|
|
|
|
* small incremental moves for DELTA or SCARA.
|
|
|
|
*/
|
|
|
|
*/
|
|
|
|
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
|
|
|
|
inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
|
|
|
|
|
|
|
|
|
|
|
|
// Get the top feedrate of the move in the XY plane
|
|
|
|
// Get the top feedrate of the move in the XY plane
|
|
|
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
|
|
|
|
|
|
|
|
// If the move is only in Z don't split up the move.
|
|
|
|
// If the move is only in Z/E don't split up the move
|
|
|
|
// This shortcut cannot be used if planar bed leveling
|
|
|
|
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
|
|
|
// is in use, but is fine with mesh-based bed leveling
|
|
|
|
inverse_kinematics(ltarget);
|
|
|
|
if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
inverse_kinematics(logical);
|
|
|
|
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Get the distance moved in XYZ
|
|
|
|
// Get the cartesian distances moved in XYZE
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
float difference[NUM_AXIS];
|
|
|
|
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
|
|
|
|
LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get the linear distance in XYZ
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// If the move is very short, check the E move distance
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// No E move either? Game over.
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) return false;
|
|
|
|
if (UNEAR_ZERO(cartesian_mm)) return false;
|
|
|
|
|
|
|
|
|
|
|
|
// Minimum number of seconds to move the given distance
|
|
|
|
// Minimum number of seconds to move the given distance
|
|
|
|
float seconds = cartesian_mm / _feedrate_mm_s;
|
|
|
|
float seconds = cartesian_mm / _feedrate_mm_s;
|
|
|
|
|
|
|
|
|
|
|
|
// The number of segments-per-second times the duration
|
|
|
|
// The number of segments-per-second times the duration
|
|
|
|
// gives the number of segments we should produce
|
|
|
|
// gives the number of segments
|
|
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// For SCARA minimum segment size is 0.5mm
|
|
|
|
#if IS_SCARA
|
|
|
|
#if IS_SCARA
|
|
|
|
NOMORE(segments, cartesian_mm * 2);
|
|
|
|
NOMORE(segments, cartesian_mm * 2);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// At least one segment is required
|
|
|
|
NOLESS(segments, 1);
|
|
|
|
NOLESS(segments, 1);
|
|
|
|
|
|
|
|
|
|
|
|
// Each segment produces this much of the move
|
|
|
|
// The approximate length of each segment
|
|
|
|
float inv_segments = 1.0 / segments,
|
|
|
|
float segment_distance[XYZE] = {
|
|
|
|
segment_distance[XYZE] = {
|
|
|
|
difference[X_AXIS] / segments,
|
|
|
|
difference[X_AXIS] * inv_segments,
|
|
|
|
difference[Y_AXIS] / segments,
|
|
|
|
difference[Y_AXIS] * inv_segments,
|
|
|
|
difference[Z_AXIS] / segments,
|
|
|
|
difference[Z_AXIS] * inv_segments,
|
|
|
|
difference[E_AXIS] / segments
|
|
|
|
difference[E_AXIS] * inv_segments
|
|
|
|
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
|
|
|
|
|
|
|
|
// Send all the segments to the planner
|
|
|
|
// Drop one segment so the last move is to the exact target.
|
|
|
|
|
|
|
|
// If there's only 1 segment, loops will be skipped entirely.
|
|
|
|
|
|
|
|
--segments;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Using "raw" coordinates saves 6 float subtractions
|
|
|
|
|
|
|
|
// per segment, saving valuable CPU cycles
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(USE_RAW_KINEMATICS)
|
|
|
|
#if ENABLED(USE_RAW_KINEMATICS)
|
|
|
|
|
|
|
|
|
|
|
|
// Get the raw current position as starting point
|
|
|
|
// Get the raw current position as starting point
|
|
|
|
float raw[ABC] = {
|
|
|
|
float raw[XYZE] = {
|
|
|
|
RAW_CURRENT_POSITION(X_AXIS),
|
|
|
|
RAW_CURRENT_POSITION(X_AXIS),
|
|
|
|
RAW_CURRENT_POSITION(Y_AXIS),
|
|
|
|
RAW_CURRENT_POSITION(Y_AXIS),
|
|
|
|
RAW_CURRENT_POSITION(Z_AXIS)
|
|
|
|
RAW_CURRENT_POSITION(Z_AXIS),
|
|
|
|
|
|
|
|
current_position[E_AXIS]
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#define DELTA_E raw[E_AXIS]
|
|
|
|
#define DELTA_VAR raw
|
|
|
|
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Delta can inline its kinematics
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#define DELTA_IK() DELTA_RAW_IK()
|
|
|
|
#define DELTA_IK() DELTA_RAW_IK()
|
|
|
|
#else
|
|
|
|
#else
|
|
|
@ -8163,11 +8173,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
|
|
// Get the logical current position as starting point
|
|
|
|
// Get the logical current position as starting point
|
|
|
|
LOOP_XYZE(i) logical[i] = current_position[i];
|
|
|
|
float logical[XYZE];
|
|
|
|
|
|
|
|
memcpy(logical, current_position, sizeof(logical));
|
|
|
|
|
|
|
|
|
|
|
|
#define DELTA_E logical[E_AXIS]
|
|
|
|
#define DELTA_VAR logical
|
|
|
|
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Delta can inline its kinematics
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#define DELTA_IK() DELTA_LOGICAL_IK()
|
|
|
|
#define DELTA_IK() DELTA_LOGICAL_IK()
|
|
|
|
#else
|
|
|
|
#else
|
|
|
@ -8178,16 +8189,26 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
|
|
|
|
|
|
|
|
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
|
|
|
|
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
|
|
|
|
|
|
|
|
|
|
|
|
// Get the starting delta for interpolation
|
|
|
|
// Only interpolate XYZ. Advance E normally.
|
|
|
|
if (segments >= 2) inverse_kinematics(logical);
|
|
|
|
#define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get the starting delta if interpolation is possible
|
|
|
|
|
|
|
|
if (segments >= 2) DELTA_IK();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Loop using decrement
|
|
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
|
|
if (s > 1) {
|
|
|
|
// Are there at least 2 moves left?
|
|
|
|
|
|
|
|
if (s >= 2) {
|
|
|
|
// Save the previous delta for interpolation
|
|
|
|
// Save the previous delta for interpolation
|
|
|
|
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
|
|
|
|
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
|
|
|
|
|
|
|
|
|
|
|
|
// Get the delta 2 segments ahead (rather than the next)
|
|
|
|
// Get the delta 2 segments ahead (rather than the next)
|
|
|
|
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
|
|
|
|
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Advance E normally
|
|
|
|
|
|
|
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Get the exact delta for the move after this
|
|
|
|
DELTA_IK();
|
|
|
|
DELTA_IK();
|
|
|
|
|
|
|
|
|
|
|
|
// Move to the interpolated delta position first
|
|
|
|
// Move to the interpolated delta position first
|
|
|
@ -8195,33 +8216,43 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
|
|
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
|
|
|
|
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
|
|
|
|
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
|
|
|
|
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
|
|
|
|
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
|
|
|
|
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
|
|
|
|
logical[E_AXIS], _feedrate_mm_s, active_extruder
|
|
|
|
DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
|
|
|
|
);
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Advance E once more for the next move
|
|
|
|
|
|
|
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
|
|
|
|
|
|
|
|
|
|
|
// Do an extra decrement of the loop
|
|
|
|
// Do an extra decrement of the loop
|
|
|
|
--s;
|
|
|
|
--s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
// Get the last segment delta (only when segments is odd)
|
|
|
|
// Get the last segment delta. (Used when segments is odd)
|
|
|
|
DELTA_NEXT(segment_distance[i])
|
|
|
|
DELTA_NEXT(segment_distance[i]);
|
|
|
|
|
|
|
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
|
|
|
DELTA_IK();
|
|
|
|
DELTA_IK();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Move to the non-interpolated position
|
|
|
|
// Move to the non-interpolated position
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
|
|
|
|
|
|
|
|
|
|
|
|
// For non-interpolated delta calculate every segment
|
|
|
|
// For non-interpolated delta calculate every segment
|
|
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
|
|
DELTA_NEXT(segment_distance[i])
|
|
|
|
DELTA_NEXT(segment_distance[i]);
|
|
|
|
DELTA_IK();
|
|
|
|
DELTA_IK();
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Since segment_distance is only approximate,
|
|
|
|
|
|
|
|
// the final move must be to the exact destination.
|
|
|
|
|
|
|
|
inverse_kinematics(ltarget);
|
|
|
|
|
|
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
|
|
return true;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|