|
|
|
@ -1042,9 +1042,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|
|
|
|
CRITICAL_SECTION_END
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
|
|
|
|
|
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
|
|
|
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
|
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
|
|
|
|
|
|
|
|
|
@ -1079,10 +1076,13 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
|
// Calculate and limit speed in mm/sec for each axis, calculate minimum acceleration ratio
|
|
|
|
|
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
|
|
|
|
|
float max_stepper_speed = 0, min_axis_accel_ratio = 1; // ratio < 1 means acceleration ramp needed
|
|
|
|
|
LOOP_XYZE(i) {
|
|
|
|
|
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
|
|
|
|
|
NOMORE(min_axis_accel_ratio, max_jerk[i] / cs);
|
|
|
|
|
NOLESS(max_stepper_speed, cs);
|
|
|
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
|
|
|
if (i == E_AXIS) i += extruder;
|
|
|
|
|
#endif
|
|
|
|
@ -1127,6 +1127,9 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|
|
|
|
}
|
|
|
|
|
#endif // XY_FREQUENCY_LIMIT
|
|
|
|
|
|
|
|
|
|
block->nominal_speed = max_stepper_speed; // (mm/sec) Always > 0
|
|
|
|
|
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
|
|
|
|
|
|
|
|
|
// Correct the speed
|
|
|
|
|
if (speed_factor < 1.0) {
|
|
|
|
|
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
|
|
|
@ -1134,6 +1137,8 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|
|
|
|
block->nominal_rate *= speed_factor;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
float safe_speed = block->nominal_speed * min_axis_accel_ratio;
|
|
|
|
|
static float previous_safe_speed;
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
|
const float steps_per_mm = block->step_event_count * inverse_millimeters;
|
|
|
|
|
uint32_t accel;
|
|
|
|
@ -1235,32 +1240,6 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Adapted from Průša MKS firmware
|
|
|
|
|
* https://github.com/prusa3d/Prusa-Firmware
|
|
|
|
|
*
|
|
|
|
|
* Start with a safe speed (from which the machine may halt to stop immediately).
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
// Exit speed limited by a jerk to full halt of a previous last segment
|
|
|
|
|
static float previous_safe_speed;
|
|
|
|
|
|
|
|
|
|
float safe_speed = block->nominal_speed;
|
|
|
|
|
uint8_t limited = 0;
|
|
|
|
|
LOOP_XYZE(i) {
|
|
|
|
|
const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
|
|
|
|
|
if (jerk > maxj) {
|
|
|
|
|
if (limited) {
|
|
|
|
|
const float mjerk = maxj * block->nominal_speed;
|
|
|
|
|
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
++limited;
|
|
|
|
|
safe_speed = maxj;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
|
|
|
|
|
// Estimate a maximum velocity allowed at a joint of two successive segments.
|
|
|
|
|
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
|
|
|
|
@ -1272,7 +1251,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
|
|
|
|
|
|
|
|
|
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
|
|
|
|
|
float v_factor = 1;
|
|
|
|
|
limited = 0;
|
|
|
|
|
uint8_t limited = 0;
|
|
|
|
|
|
|
|
|
|
// Now limit the jerk in all axes.
|
|
|
|
|
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
|
|
|
|
|