Comment/cleanup motion code

master
Scott Lahteine 7 years ago
parent 7bed539fdb
commit 8b7c274db5

@ -301,12 +301,38 @@ void report_current_position();
extern float delta_height, extern float delta_height,
delta_endstop_adj[ABC], delta_endstop_adj[ABC],
delta_radius, delta_radius,
delta_tower_angle_trim[ABC],
delta_tower[ABC][2],
delta_diagonal_rod, delta_diagonal_rod,
delta_calibration_radius, delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second, delta_segments_per_second,
delta_tower_angle_trim[ABC],
delta_clip_start_height; delta_clip_start_height;
void recalc_delta_settings(); void recalc_delta_settings();
float delta_safe_distance_from_top();
#if ENABLED(DELTA_FAST_SQRT)
float Q_rsqrt(const float number);
#define _SQRT(n) (1.0f / Q_rsqrt(n))
#else
#define _SQRT(n) SQRT(n)
#endif
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - raw[X_AXIS], \
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
) \
)
#define DELTA_RAW_IK() do { \
delta[A_AXIS] = DELTA_Z(A_AXIS); \
delta[B_AXIS] = DELTA_Z(B_AXIS); \
delta[C_AXIS] = DELTA_Z(C_AXIS); \
}while(0)
#elif IS_SCARA #elif IS_SCARA
void forward_kinematics_SCARA(const float &a, const float &b); void forward_kinematics_SCARA(const float &a, const float &b);
#endif #endif

@ -12258,7 +12258,7 @@ void ok_to_send() {
* Fast inverse sqrt from Quake III Arena * Fast inverse sqrt from Quake III Arena
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
*/ */
float Q_rsqrt(float number) { float Q_rsqrt(const float number) {
long i; long i;
float x2, y; float x2, y;
const float threehalfs = 1.5f; const float threehalfs = 1.5f;
@ -12272,12 +12272,6 @@ void ok_to_send() {
return y; return y;
} }
#define _SQRT(n) (1.0f / Q_rsqrt(n))
#else
#define _SQRT(n) SQRT(n)
#endif #endif
/** /**
@ -12299,20 +12293,6 @@ void ok_to_send() {
* (see above) * (see above)
*/ */
// Macro to obtain the Z position of an individual tower
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
delta_diagonal_rod_2_tower[T] - HYPOT2( \
delta_tower[T][X_AXIS] - raw[X_AXIS], \
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
) \
)
#define DELTA_RAW_IK() do { \
delta[A_AXIS] = DELTA_Z(A_AXIS); \
delta[B_AXIS] = DELTA_Z(B_AXIS); \
delta[C_AXIS] = DELTA_Z(C_AXIS); \
}while(0)
#define DELTA_DEBUG() do { \ #define DELTA_DEBUG() do { \
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \ SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \ SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
@ -12367,46 +12347,53 @@ void ok_to_send() {
*/ */
void forward_kinematics_DELTA(float z1, float z2, float z3) { void forward_kinematics_DELTA(float z1, float z2, float z3) {
// Create a vector in old coordinates along x axis of new coordinate // Create a vector in old coordinates along x axis of new coordinate
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 }; const float p12[] = {
delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
z2 - z1
},
// Get the Magnitude of vector. // Get the Magnitude of vector.
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) ); d = SQRT(sq(p12[0]) + sq(p12[1]) + sq(p12[2])),
// Create unit vector by dividing by magnitude. // Create unit vector by dividing by magnitude.
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d }; ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d },
// Get the vector from the origin of the new system to the third point. // Get the vector from the origin of the new system to the third point.
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 }; p13[3] = {
delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS],
delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS],
z3 - z1
},
// Use the dot product to find the component of this vector on the X axis. // Use the dot product to find the component of this vector on the X axis.
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2]; i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2],
// Create a vector along the x axis that represents the x component of p13. // Create a vector along the x axis that represents the x component of p13.
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i }; iex[] = { ex[0] * i, ex[1] * i, ex[2] * i };
// Subtract the X component from the original vector leaving only Y. We use the // Subtract the X component from the original vector leaving only Y. We use the
// variable that will be the unit vector after we scale it. // variable that will be the unit vector after we scale it.
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] }; float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
// The magnitude of Y component // The magnitude of Y component
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) ); const float j = SQRT(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
// Convert to a unit vector // Convert to a unit vector
ey[0] /= j; ey[1] /= j; ey[2] /= j; ey[0] /= j; ey[1] /= j; ey[2] /= j;
// The cross product of the unit x and y is the unit z // The cross product of the unit x and y is the unit z
// float[] ez = vectorCrossProd(ex, ey); // float[] ez = vectorCrossProd(ex, ey);
float ez[3] = { const float ez[3] = {
ex[1] * ey[2] - ex[2] * ey[1], ex[1] * ey[2] - ex[2] * ey[1],
ex[2] * ey[0] - ex[0] * ey[2], ex[2] * ey[0] - ex[0] * ey[2],
ex[0] * ey[1] - ex[1] * ey[0] ex[0] * ey[1] - ex[1] * ey[0]
}; },
// We now have the d, i and j values defined in Wikipedia. // We now have the d, i and j values defined in Wikipedia.
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2), Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j, Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew)); Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
// Start from the origin of the old coordinates and add vectors in the // Start from the origin of the old coordinates and add vectors in the
// old coords that represent the Xnew, Ynew and Znew to find the point // old coords that represent the Xnew, Ynew and Znew to find the point
@ -12478,7 +12465,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* small incremental moves. This allows the planner to * small incremental moves. This allows the planner to
* apply more detailed bed leveling to the full move. * apply more detailed bed leveling to the full move.
*/ */
inline void segmented_line_to_destination(const float fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) { inline void segmented_line_to_destination(const float &fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) {
const float xdiff = destination[X_AXIS] - current_position[X_AXIS], const float xdiff = destination[X_AXIS] - current_position[X_AXIS],
ydiff = destination[Y_AXIS] - current_position[Y_AXIS]; ydiff = destination[Y_AXIS] - current_position[Y_AXIS];
@ -12517,16 +12504,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOLNPAIR(" segments=", segments); // SERIAL_ECHOLNPAIR(" segments=", segments);
// Drop one segment so the last move is to the exact target.
// If there's only 1 segment, loops will be skipped entirely.
--segments;
// Get the raw current position as starting point // Get the raw current position as starting point
float raw[XYZE]; float raw[XYZE];
COPY(raw, current_position); COPY(raw, current_position);
// Calculate and execute the segments // Calculate and execute the segments
for (uint16_t s = segments + 1; --s;) { while (--segments) {
static millis_t next_idle_ms = millis() + 200UL; static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed. thermalManager.manage_heater(); // This returns immediately if not really needed.
if (ELAPSED(millis(), next_idle_ms)) { if (ELAPSED(millis(), next_idle_ms)) {
@ -12548,7 +12531,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* Prepare a mesh-leveled linear move in a Cartesian setup, * Prepare a mesh-leveled linear move in a Cartesian setup,
* splitting the move where it crosses mesh borders. * splitting the move where it crosses mesh borders.
*/ */
void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) { void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF) {
// Get current and destination cells for this line
int cx1 = mbl.cell_index_x(current_position[X_AXIS]), int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
cy1 = mbl.cell_index_y(current_position[Y_AXIS]), cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
cx2 = mbl.cell_index_x(destination[X_AXIS]), cx2 = mbl.cell_index_x(destination[X_AXIS]),
@ -12558,8 +12542,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
NOMORE(cx2, GRID_MAX_POINTS_X - 2); NOMORE(cx2, GRID_MAX_POINTS_X - 2);
NOMORE(cy2, GRID_MAX_POINTS_Y - 2); NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
// Start and end in the same cell? No split needed.
if (cx1 == cx2 && cy1 == cy2) { if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
buffer_line_to_destination(fr_mm_s); buffer_line_to_destination(fr_mm_s);
set_current_from_destination(); set_current_from_destination();
return; return;
@ -12568,25 +12552,30 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE]; float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
// Crosses on the X and not already split on this X?
// The x_splits flags are insurance against rounding errors.
if (cx2 != cx1 && TEST(x_splits, gcx)) { if (cx2 != cx1 && TEST(x_splits, gcx)) {
// Split on the X grid line
CBI(x_splits, gcx);
COPY(end, destination); COPY(end, destination);
destination[X_AXIS] = mbl.index_to_xpos[gcx]; destination[X_AXIS] = mbl.index_to_xpos[gcx];
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y); destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx);
} }
// Crosses on the Y and not already split on this Y?
else if (cy2 != cy1 && TEST(y_splits, gcy)) { else if (cy2 != cy1 && TEST(y_splits, gcy)) {
// Split on the Y grid line
CBI(y_splits, gcy);
COPY(end, destination); COPY(end, destination);
destination[Y_AXIS] = mbl.index_to_ypos[gcy]; destination[Y_AXIS] = mbl.index_to_ypos[gcy];
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X); destination[X_AXIS] = MBL_SEGMENT_END(X);
CBI(y_splits, gcy);
} }
else { else {
// Already split on a border // Must already have been split on these border(s)
// This should be a rare case.
buffer_line_to_destination(fr_mm_s); buffer_line_to_destination(fr_mm_s);
set_current_from_destination(); set_current_from_destination();
return; return;
@ -12611,7 +12600,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* Prepare a bilinear-leveled linear move on Cartesian, * Prepare a bilinear-leveled linear move on Cartesian,
* splitting the move where it crosses grid borders. * splitting the move where it crosses grid borders.
*/ */
void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) { void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF) {
// Get current and destination cells for this line
int cx1 = CELL_INDEX(X, current_position[X_AXIS]), int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]), cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
cx2 = CELL_INDEX(X, destination[X_AXIS]), cx2 = CELL_INDEX(X, destination[X_AXIS]),
@ -12621,8 +12611,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2); cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2); cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
// Start and end in the same cell? No split needed.
if (cx1 == cx2 && cy1 == cy2) { if (cx1 == cx2 && cy1 == cy2) {
// Start and end on same mesh square
buffer_line_to_destination(fr_mm_s); buffer_line_to_destination(fr_mm_s);
set_current_from_destination(); set_current_from_destination();
return; return;
@ -12631,25 +12621,30 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
float normalized_dist, end[XYZE]; float normalized_dist, end[XYZE];
// Split at the left/front border of the right/top square
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
// Crosses on the X and not already split on this X?
// The x_splits flags are insurance against rounding errors.
if (cx2 != cx1 && TEST(x_splits, gcx)) { if (cx2 != cx1 && TEST(x_splits, gcx)) {
// Split on the X grid line
CBI(x_splits, gcx);
COPY(end, destination); COPY(end, destination);
destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx; destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = LINE_SEGMENT_END(Y); destination[Y_AXIS] = LINE_SEGMENT_END(Y);
CBI(x_splits, gcx);
} }
// Crosses on the Y and not already split on this Y?
else if (cy2 != cy1 && TEST(y_splits, gcy)) { else if (cy2 != cy1 && TEST(y_splits, gcy)) {
// Split on the Y grid line
CBI(y_splits, gcy);
COPY(end, destination); COPY(end, destination);
destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy; destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = LINE_SEGMENT_END(X); destination[X_AXIS] = LINE_SEGMENT_END(X);
CBI(y_splits, gcy);
} }
else { else {
// Already split on a border // Must already have been split on these border(s)
// This should be a rare case.
buffer_line_to_destination(fr_mm_s); buffer_line_to_destination(fr_mm_s);
set_current_from_destination(); set_current_from_destination();
return; return;
@ -12745,16 +12740,13 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
oldB = stepper.get_axis_position_degrees(B_AXIS); oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif #endif
// Get the raw current position as starting point // Get the current position as starting point
float raw[XYZE]; float raw[XYZE];
COPY(raw, current_position); COPY(raw, current_position);
// Drop one segment so the last move is to the exact target.
// If there's only 1 segment, loops will be skipped entirely.
--segments;
// Calculate and execute the segments // Calculate and execute the segments
for (uint16_t s = segments + 1; --s;) { while (--segments) {
static millis_t next_idle_ms = millis() + 200UL; static millis_t next_idle_ms = millis() + 200UL;
thermalManager.manage_heater(); // This returns immediately if not really needed. thermalManager.manage_heater(); // This returns immediately if not really needed.
@ -13033,7 +13025,7 @@ void prepare_move_to_destination() {
if (mm_of_travel < 0.001) return; if (mm_of_travel < 0.001) return;
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT)); uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
if (segments == 0) segments = 1; NOLESS(segments, 1);
/** /**
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,

@ -140,7 +140,7 @@ class Planner {
static uint8_t last_extruder; // Respond to extruder change static uint8_t last_extruder; // Respond to extruder change
#endif #endif
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
@ -501,8 +501,8 @@ class Planner {
/** /**
* Get the index of the next / previous block in the ring buffer * Get the index of the next / previous block in the ring buffer
*/ */
static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } static int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } static int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
/** /**
* Calculate the distance (not time) it takes to accelerate * Calculate the distance (not time) it takes to accelerate

@ -443,8 +443,7 @@ void Stepper::isr() {
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (!current_block) { if (!current_block) {
// Anything in the buffer? // Anything in the buffer?
current_block = planner.get_current_block(); if ((current_block = planner.get_current_block())) {
if (current_block) {
trapezoid_generator_reset(); trapezoid_generator_reset();
// Initialize Bresenham counters to 1/2 the ceiling // Initialize Bresenham counters to 1/2 the ceiling

@ -38,25 +38,6 @@
extern void set_current_from_destination(); extern void set_current_from_destination();
#endif #endif
#if ENABLED(DELTA)
extern float delta[ABC];
extern float delta_endstop_adj[ABC],
delta_radius,
delta_tower_angle_trim[ABC],
delta_tower[ABC][2],
delta_diagonal_rod,
delta_calibration_radius,
delta_diagonal_rod_2_tower[ABC],
delta_segments_per_second,
delta_clip_start_height;
extern float delta_safe_distance_from_top();
#endif
static void debug_echo_axis(const AxisEnum axis) { static void debug_echo_axis(const AxisEnum axis) {
if (current_position[axis] == destination[axis]) if (current_position[axis] == destination[axis])
SERIAL_ECHOPGM("-------------"); SERIAL_ECHOPGM("-------------");
@ -268,9 +249,9 @@
* else, we know the next X is the same so we can recover and continue! * else, we know the next X is the same so we can recover and continue!
* Calculate X at the next Y mesh line * Calculate X at the next Y mesh line
*/ */
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi) float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]); * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
@ -282,7 +263,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float y = mesh_index_to_ypos(current_yi); const float ry = mesh_index_to_ypos(current_yi);
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -290,9 +271,9 @@
* happens, it might be best to remove the check and always 'schedule' the move because * happens, it might be best to remove the check and always 'schedule' the move because
* the planner._buffer_line() routine will filter it if that happens. * the planner._buffer_line() routine will filter it if that happens.
*/ */
if (y != start[Y_AXIS]) { if (ry != start[Y_AXIS]) {
if (!inf_normalized_flag) { if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS]; on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
} }
@ -301,7 +282,7 @@
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder); planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
@ -332,9 +313,9 @@
while (current_xi != cell_dest_xi + left_flag) { while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi; current_xi += dxi;
const float next_mesh_line_x = mesh_index_to_xpos(current_xi), const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi) float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]); * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
@ -346,7 +327,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float x = mesh_index_to_xpos(current_xi); const float rx = mesh_index_to_xpos(current_xi);
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -354,9 +335,9 @@
* that happens, it might be best to remove the check and always 'schedule' the move because * that happens, it might be best to remove the check and always 'schedule' the move because
* the planner._buffer_line() routine will filter it if that happens. * the planner._buffer_line() routine will filter it if that happens.
*/ */
if (x != start[X_AXIS]) { if (rx != start[X_AXIS]) {
if (!inf_normalized_flag) { if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS]; on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
} }
@ -365,7 +346,7 @@
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder); planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
@ -398,15 +379,15 @@
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi), const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi), next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero. // (No need to worry about m being zero.
// If that was the case, it was already detected // If that was the case, it was already detected
// as a vertical line move above.) // as a vertical line move above.)
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
// Yes! Crossing a Y Mesh Line next // Yes! Crossing a Y Mesh Line next
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi) float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]); * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
@ -419,7 +400,7 @@
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) { if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
} }
@ -427,13 +408,13 @@
e_position = end[E_AXIS]; e_position = end[E_AXIS];
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(x, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder); planner._buffer_line(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
current_yi += dyi; current_yi += dyi;
yi_cnt--; yi_cnt--;
} }
else { else {
// Yes! Crossing a X Mesh Line next // Yes! Crossing a X Mesh Line next
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag) float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
* planner.fade_scaling_factor_for_z(end[Z_AXIS]); * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
/** /**
@ -446,7 +427,7 @@
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) { if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
} }
@ -455,7 +436,7 @@
z_position = end[Z_AXIS]; z_position = end[Z_AXIS];
} }
planner._buffer_line(next_mesh_line_x, y, z_position + z0, e_position, feed_rate, extruder); planner._buffer_line(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
current_xi += dxi; current_xi += dxi;
xi_cnt--; xi_cnt--;
} }
@ -489,29 +470,16 @@
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic, // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first. // so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) { inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) {
#if ENABLED(DELTA) // apply delta inverse_kinematics #if ENABLED(DELTA) // apply delta inverse_kinematics
const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS] DELTA_RAW_IK();
- HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx, planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
delta_tower[A_AXIS][Y_AXIS] - ry ));
const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
- HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
delta_tower[B_AXIS][Y_AXIS] - ry ));
const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
- HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
delta_tower[C_AXIS][Y_AXIS] - ry ));
planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder); #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
#elif IS_SCARA // apply scara inverse_kinematics inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
const float lseg[XYZ] = { rx, ry, rz };
inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
// should move the feedrate scaling to scara inverse_kinematics // should move the feedrate scaling to scara inverse_kinematics
const float adiff = FABS(delta[A_AXIS] - scara_oldA), const float adiff = FABS(delta[A_AXIS] - scara_oldA),
@ -520,14 +488,13 @@
scara_oldB = delta[B_AXIS]; scara_oldB = delta[B_AXIS];
float s_feedrate = max(adiff, bdiff) * scara_feed_factor; float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder); planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
#else // CARTESIAN #else // CARTESIAN
planner._buffer_line(rx, ry, rz, e, fr, active_extruder); planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
#endif #endif
} }
@ -542,12 +509,14 @@
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
return true; // did not move, so current_position still accurate return true; // did not move, so current_position still accurate
const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS], const float total[XYZE] = {
tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS], rtarget[X_AXIS] - current_position[X_AXIS],
tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS], rtarget[Y_AXIS] - current_position[Y_AXIS],
tot_de = rtarget[E_AXIS] - current_position[E_AXIS]; rtarget[Z_AXIS] - current_position[Z_AXIS],
rtarget[E_AXIS] - current_position[E_AXIS]
};
const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
#if IS_KINEMATIC #if IS_KINEMATIC
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
@ -567,49 +536,30 @@
scara_oldB = stepper.get_axis_position_degrees(B_AXIS); scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
#endif #endif
const float seg_dx = tot_dx * inv_segments, const float diff[XYZE] = {
seg_dy = tot_dy * inv_segments, total[X_AXIS] * inv_segments,
seg_dz = tot_dz * inv_segments, total[Y_AXIS] * inv_segments,
seg_de = tot_de * inv_segments; total[Z_AXIS] * inv_segments,
total[E_AXIS] * inv_segments
};
// Note that E segment distance could vary slightly as z mesh height // Note that E segment distance could vary slightly as z mesh height
// changes for each segment, but small enough to ignore. // changes for each segment, but small enough to ignore.
float seg_rx = current_position[X_AXIS], float raw[XYZE] = {
seg_ry = current_position[Y_AXIS], current_position[X_AXIS],
seg_rz = current_position[Z_AXIS], current_position[Y_AXIS],
seg_le = current_position[E_AXIS]; current_position[Z_AXIS],
current_position[E_AXIS]
const bool above_fade_height = ( };
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
planner.z_fade_height != 0 && planner.z_fade_height < rtarget[Z_AXIS]
#else
false
#endif
);
// Only compute leveling per segment if ubl active and target below z_fade_height. // Only compute leveling per segment if ubl active and target below z_fade_height.
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
while (--segments) {
do { LOOP_XYZE(i) raw[i] += diff[i];
ubl_buffer_segment_raw(raw, feedrate);
if (--segments) { // not the last segment }
seg_rx += seg_dx; ubl_buffer_segment_raw(rtarget, feedrate);
seg_ry += seg_dy;
seg_rz += seg_dz;
seg_le += seg_de;
} else { // last segment, use exact destination
seg_rx = rtarget[X_AXIS];
seg_ry = rtarget[Y_AXIS];
seg_rz = rtarget[Z_AXIS];
seg_le = rtarget[E_AXIS];
}
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate);
} while (segments);
return false; // moved but did not set_current_from_destination(); return false; // moved but did not set_current_from_destination();
} }
@ -617,15 +567,10 @@
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]); const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
#else
constexpr float fade_scaling_factor = 1.0;
#endif #endif
// increment to first segment destination // increment to first segment destination
seg_rx += seg_dx; LOOP_XYZE(i) raw[i] += diff[i];
seg_ry += seg_dy;
seg_rz += seg_dz;
seg_le += seg_de;
for(;;) { // for each mesh cell encountered during the move for(;;) { // for each mesh cell encountered during the move
@ -636,8 +581,8 @@
// in top of loop and again re-find same adjacent cell and use it, just less efficient // in top of loop and again re-find same adjacent cell and use it, just less efficient
// for mesh inset area. // for mesh inset area.
int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)), int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST)); cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
@ -655,8 +600,8 @@
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
float cx = seg_rx - x0, // cell-relative x and y float cx = raw[X_AXIS] - x0, // cell-relative x and y
cy = seg_ry - y0; cy = raw[Y_AXIS] - y0;
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right) const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right) z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
@ -674,36 +619,35 @@
// and the z_cxym slope will change, both as a function of cx within the cell, and // and the z_cxym slope will change, both as a function of cx within the cell, and
// each change by a constant for fixed segment lengths. // each change by a constant for fixed segment lengths.
const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0 const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
for(;;) { // for all segments within this mesh cell for(;;) { // for all segments within this mesh cell
float z_cxcy = (z_cxy0 + z_cxym * cy) * fade_scaling_factor; // interpolated mesh z height along cx at cy, scaled for fade if (--segments == 0) // if this is last segment, use rtarget for exact
COPY(raw, rtarget);
if (--segments == 0) { // if this is last segment, use rtarget for exact const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
seg_rx = rtarget[X_AXIS]; #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
seg_ry = rtarget[Y_AXIS]; * fade_scaling_factor // apply fade factor to interpolated mesh height
seg_rz = rtarget[Z_AXIS]; #endif
seg_le = rtarget[E_AXIS]; ;
}
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate); const float z = raw[Z_AXIS];
raw[Z_AXIS] += z_cxcy;
ubl_buffer_segment_raw(raw, feedrate);
raw[Z_AXIS] = z;
if (segments == 0) // done with last segment if (segments == 0) // done with last segment
return false; // did not set_current_from_destination() return false; // did not set_current_from_destination()
seg_rx += seg_dx; LOOP_XYZE(i) raw[i] += diff[i];
seg_ry += seg_dy;
seg_rz += seg_dz;
seg_le += seg_de;
cx += seg_dx; cx += diff[X_AXIS];
cy += seg_dy; cy += diff[Y_AXIS];
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
break; break;
}
// Next segment still within same mesh cell, adjust the per-segment // Next segment still within same mesh cell, adjust the per-segment
// slope and intercept to compute next z height. // slope and intercept to compute next z height.
@ -718,4 +662,3 @@
#endif // UBL_DELTA #endif // UBL_DELTA
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL

Loading…
Cancel
Save