|
|
|
@ -38,25 +38,6 @@
|
|
|
|
|
extern void set_current_from_destination();
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
|
|
|
|
|
extern float delta[ABC];
|
|
|
|
|
|
|
|
|
|
extern float delta_endstop_adj[ABC],
|
|
|
|
|
delta_radius,
|
|
|
|
|
delta_tower_angle_trim[ABC],
|
|
|
|
|
delta_tower[ABC][2],
|
|
|
|
|
delta_diagonal_rod,
|
|
|
|
|
delta_calibration_radius,
|
|
|
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
|
|
|
delta_segments_per_second,
|
|
|
|
|
delta_clip_start_height;
|
|
|
|
|
|
|
|
|
|
extern float delta_safe_distance_from_top();
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void debug_echo_axis(const AxisEnum axis) {
|
|
|
|
|
if (current_position[axis] == destination[axis])
|
|
|
|
|
SERIAL_ECHOPGM("-------------");
|
|
|
|
@ -268,9 +249,9 @@
|
|
|
|
|
* else, we know the next X is the same so we can recover and continue!
|
|
|
|
|
* Calculate X at the next Y mesh line
|
|
|
|
|
*/
|
|
|
|
|
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
|
|
|
|
const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
|
|
|
|
|
|
|
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi)
|
|
|
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
|
|
|
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -282,7 +263,7 @@
|
|
|
|
|
*/
|
|
|
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
|
|
|
|
|
|
const float y = mesh_index_to_ypos(current_yi);
|
|
|
|
|
const float ry = mesh_index_to_ypos(current_yi);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
|
|
|
@ -290,9 +271,9 @@
|
|
|
|
|
* happens, it might be best to remove the check and always 'schedule' the move because
|
|
|
|
|
* the planner._buffer_line() routine will filter it if that happens.
|
|
|
|
|
*/
|
|
|
|
|
if (y != start[Y_AXIS]) {
|
|
|
|
|
if (ry != start[Y_AXIS]) {
|
|
|
|
|
if (!inf_normalized_flag) {
|
|
|
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
|
|
|
|
|
on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
|
|
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
|
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
|
|
}
|
|
|
|
@ -301,7 +282,7 @@
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -332,9 +313,9 @@
|
|
|
|
|
while (current_xi != cell_dest_xi + left_flag) {
|
|
|
|
|
current_xi += dxi;
|
|
|
|
|
const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
|
|
|
|
|
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
|
|
|
|
ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
|
|
|
|
|
|
|
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi)
|
|
|
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
|
|
|
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -346,7 +327,7 @@
|
|
|
|
|
*/
|
|
|
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
|
|
|
|
|
|
const float x = mesh_index_to_xpos(current_xi);
|
|
|
|
|
const float rx = mesh_index_to_xpos(current_xi);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
|
|
|
@ -354,9 +335,9 @@
|
|
|
|
|
* that happens, it might be best to remove the check and always 'schedule' the move because
|
|
|
|
|
* the planner._buffer_line() routine will filter it if that happens.
|
|
|
|
|
*/
|
|
|
|
|
if (x != start[X_AXIS]) {
|
|
|
|
|
if (rx != start[X_AXIS]) {
|
|
|
|
|
if (!inf_normalized_flag) {
|
|
|
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
|
|
|
|
|
on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
|
|
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
|
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
|
|
}
|
|
|
|
@ -365,7 +346,7 @@
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(x, y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner._buffer_line(rx, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
} //else printf("FIRST MOVE PRUNED ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -398,15 +379,15 @@
|
|
|
|
|
|
|
|
|
|
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
|
|
|
|
|
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
|
|
|
|
|
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
|
|
|
|
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
|
|
|
|
ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
|
|
|
|
rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
|
|
|
|
// (No need to worry about m being zero.
|
|
|
|
|
// If that was the case, it was already detected
|
|
|
|
|
// as a vertical line move above.)
|
|
|
|
|
|
|
|
|
|
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
|
|
|
|
|
if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
|
|
|
|
|
// Yes! Crossing a Y Mesh Line next
|
|
|
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi)
|
|
|
|
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
|
|
|
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -419,7 +400,7 @@
|
|
|
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
|
|
|
|
|
|
if (!inf_normalized_flag) {
|
|
|
|
|
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
|
|
|
|
|
on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
|
|
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
|
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
|
|
}
|
|
|
|
@ -427,13 +408,13 @@
|
|
|
|
|
e_position = end[E_AXIS];
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
planner._buffer_line(x, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner._buffer_line(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
current_yi += dyi;
|
|
|
|
|
yi_cnt--;
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
// Yes! Crossing a X Mesh Line next
|
|
|
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag)
|
|
|
|
|
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
|
|
|
|
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
@ -446,7 +427,7 @@
|
|
|
|
|
if (isnan(z0)) z0 = 0.0;
|
|
|
|
|
|
|
|
|
|
if (!inf_normalized_flag) {
|
|
|
|
|
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
|
|
|
|
|
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
|
|
|
|
|
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
|
|
|
|
|
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
|
|
|
|
|
}
|
|
|
|
@ -455,7 +436,7 @@
|
|
|
|
|
z_position = end[Z_AXIS];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(next_mesh_line_x, y, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
planner._buffer_line(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder);
|
|
|
|
|
current_xi += dxi;
|
|
|
|
|
xi_cnt--;
|
|
|
|
|
}
|
|
|
|
@ -489,29 +470,16 @@
|
|
|
|
|
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
|
|
|
|
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
|
|
|
|
|
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float &rx, const float &ry, const float rz, const float &e, const float &fr) {
|
|
|
|
|
inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) {
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
|
|
|
|
|
|
|
|
|
const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
|
|
|
|
|
- HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
|
|
|
|
|
delta_tower[A_AXIS][Y_AXIS] - ry ));
|
|
|
|
|
|
|
|
|
|
const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
|
|
|
|
|
- HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
|
|
|
|
|
delta_tower[B_AXIS][Y_AXIS] - ry ));
|
|
|
|
|
|
|
|
|
|
const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
|
|
|
|
|
- HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
|
|
|
|
|
delta_tower[C_AXIS][Y_AXIS] - ry ));
|
|
|
|
|
DELTA_RAW_IK();
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(delta_A, delta_B, delta_C, e, fr, active_extruder);
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
|
|
|
|
|
|
|
|
|
#elif IS_SCARA // apply scara inverse_kinematics
|
|
|
|
|
|
|
|
|
|
const float lseg[XYZ] = { rx, ry, rz };
|
|
|
|
|
|
|
|
|
|
inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
|
|
|
|
|
inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
|
|
|
|
|
// should move the feedrate scaling to scara inverse_kinematics
|
|
|
|
|
|
|
|
|
|
const float adiff = FABS(delta[A_AXIS] - scara_oldA),
|
|
|
|
@ -520,14 +488,13 @@
|
|
|
|
|
scara_oldB = delta[B_AXIS];
|
|
|
|
|
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], e, s_feedrate, active_extruder);
|
|
|
|
|
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], s_feedrate, active_extruder);
|
|
|
|
|
|
|
|
|
|
#else // CARTESIAN
|
|
|
|
|
|
|
|
|
|
planner._buffer_line(rx, ry, rz, e, fr, active_extruder);
|
|
|
|
|
planner._buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], raw[E_AXIS], fr, active_extruder);
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -542,12 +509,14 @@
|
|
|
|
|
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
|
|
|
|
return true; // did not move, so current_position still accurate
|
|
|
|
|
|
|
|
|
|
const float tot_dx = rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
|
|
tot_dy = rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
|
|
|
tot_dz = rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
tot_de = rtarget[E_AXIS] - current_position[E_AXIS];
|
|
|
|
|
const float total[XYZE] = {
|
|
|
|
|
rtarget[X_AXIS] - current_position[X_AXIS],
|
|
|
|
|
rtarget[Y_AXIS] - current_position[Y_AXIS],
|
|
|
|
|
rtarget[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
|
rtarget[E_AXIS] - current_position[E_AXIS]
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
|
|
|
|
|
const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
|
|
|
|
|
|
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
|
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
|
|
|
@ -567,49 +536,30 @@
|
|
|
|
|
scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
const float seg_dx = tot_dx * inv_segments,
|
|
|
|
|
seg_dy = tot_dy * inv_segments,
|
|
|
|
|
seg_dz = tot_dz * inv_segments,
|
|
|
|
|
seg_de = tot_de * inv_segments;
|
|
|
|
|
const float diff[XYZE] = {
|
|
|
|
|
total[X_AXIS] * inv_segments,
|
|
|
|
|
total[Y_AXIS] * inv_segments,
|
|
|
|
|
total[Z_AXIS] * inv_segments,
|
|
|
|
|
total[E_AXIS] * inv_segments
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Note that E segment distance could vary slightly as z mesh height
|
|
|
|
|
// changes for each segment, but small enough to ignore.
|
|
|
|
|
|
|
|
|
|
float seg_rx = current_position[X_AXIS],
|
|
|
|
|
seg_ry = current_position[Y_AXIS],
|
|
|
|
|
seg_rz = current_position[Z_AXIS],
|
|
|
|
|
seg_le = current_position[E_AXIS];
|
|
|
|
|
|
|
|
|
|
const bool above_fade_height = (
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
|
planner.z_fade_height != 0 && planner.z_fade_height < rtarget[Z_AXIS]
|
|
|
|
|
#else
|
|
|
|
|
false
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
float raw[XYZE] = {
|
|
|
|
|
current_position[X_AXIS],
|
|
|
|
|
current_position[Y_AXIS],
|
|
|
|
|
current_position[Z_AXIS],
|
|
|
|
|
current_position[E_AXIS]
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
|
|
|
|
|
|
|
|
|
if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
|
|
|
|
|
|
|
|
|
|
do {
|
|
|
|
|
|
|
|
|
|
if (--segments) { // not the last segment
|
|
|
|
|
seg_rx += seg_dx;
|
|
|
|
|
seg_ry += seg_dy;
|
|
|
|
|
seg_rz += seg_dz;
|
|
|
|
|
seg_le += seg_de;
|
|
|
|
|
} else { // last segment, use exact destination
|
|
|
|
|
seg_rx = rtarget[X_AXIS];
|
|
|
|
|
seg_ry = rtarget[Y_AXIS];
|
|
|
|
|
seg_rz = rtarget[Z_AXIS];
|
|
|
|
|
seg_le = rtarget[E_AXIS];
|
|
|
|
|
while (--segments) {
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
|
|
ubl_buffer_segment_raw(raw, feedrate);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz, seg_le, feedrate);
|
|
|
|
|
|
|
|
|
|
} while (segments);
|
|
|
|
|
|
|
|
|
|
ubl_buffer_segment_raw(rtarget, feedrate);
|
|
|
|
|
return false; // moved but did not set_current_from_destination();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -617,15 +567,10 @@
|
|
|
|
|
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
|
const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
|
|
|
|
|
#else
|
|
|
|
|
constexpr float fade_scaling_factor = 1.0;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// increment to first segment destination
|
|
|
|
|
seg_rx += seg_dx;
|
|
|
|
|
seg_ry += seg_dy;
|
|
|
|
|
seg_rz += seg_dz;
|
|
|
|
|
seg_le += seg_de;
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
|
|
|
|
|
|
|
for(;;) { // for each mesh cell encountered during the move
|
|
|
|
|
|
|
|
|
@ -636,8 +581,8 @@
|
|
|
|
|
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
|
|
|
|
// for mesh inset area.
|
|
|
|
|
|
|
|
|
|
int8_t cell_xi = (seg_rx - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
|
|
|
|
cell_yi = (seg_ry - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
|
|
|
|
int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
|
|
|
|
cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
|
|
|
|
|
|
|
|
|
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
|
|
|
|
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
|
|
|
@ -655,8 +600,8 @@
|
|
|
|
|
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
|
|
|
|
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
|
|
|
|
|
|
|
|
|
float cx = seg_rx - x0, // cell-relative x and y
|
|
|
|
|
cy = seg_ry - y0;
|
|
|
|
|
float cx = raw[X_AXIS] - x0, // cell-relative x and y
|
|
|
|
|
cy = raw[Y_AXIS] - y0;
|
|
|
|
|
|
|
|
|
|
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
|
|
|
|
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
|
|
|
@ -674,36 +619,35 @@
|
|
|
|
|
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
|
|
|
|
// each change by a constant for fixed segment lengths.
|
|
|
|
|
|
|
|
|
|
const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
|
|
|
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
|
|
|
|
|
const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
|
|
|
|
|
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
|
|
|
|
|
|
|
|
|
|
for(;;) { // for all segments within this mesh cell
|
|
|
|
|
|
|
|
|
|
float z_cxcy = (z_cxy0 + z_cxym * cy) * fade_scaling_factor; // interpolated mesh z height along cx at cy, scaled for fade
|
|
|
|
|
if (--segments == 0) // if this is last segment, use rtarget for exact
|
|
|
|
|
COPY(raw, rtarget);
|
|
|
|
|
|
|
|
|
|
if (--segments == 0) { // if this is last segment, use rtarget for exact
|
|
|
|
|
seg_rx = rtarget[X_AXIS];
|
|
|
|
|
seg_ry = rtarget[Y_AXIS];
|
|
|
|
|
seg_rz = rtarget[Z_AXIS];
|
|
|
|
|
seg_le = rtarget[E_AXIS];
|
|
|
|
|
}
|
|
|
|
|
const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
|
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
|
* fade_scaling_factor // apply fade factor to interpolated mesh height
|
|
|
|
|
#endif
|
|
|
|
|
;
|
|
|
|
|
|
|
|
|
|
ubl_buffer_segment_raw(seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate);
|
|
|
|
|
const float z = raw[Z_AXIS];
|
|
|
|
|
raw[Z_AXIS] += z_cxcy;
|
|
|
|
|
ubl_buffer_segment_raw(raw, feedrate);
|
|
|
|
|
raw[Z_AXIS] = z;
|
|
|
|
|
|
|
|
|
|
if (segments == 0) // done with last segment
|
|
|
|
|
return false; // did not set_current_from_destination()
|
|
|
|
|
|
|
|
|
|
seg_rx += seg_dx;
|
|
|
|
|
seg_ry += seg_dy;
|
|
|
|
|
seg_rz += seg_dz;
|
|
|
|
|
seg_le += seg_de;
|
|
|
|
|
LOOP_XYZE(i) raw[i] += diff[i];
|
|
|
|
|
|
|
|
|
|
cx += seg_dx;
|
|
|
|
|
cy += seg_dy;
|
|
|
|
|
cx += diff[X_AXIS];
|
|
|
|
|
cy += diff[Y_AXIS];
|
|
|
|
|
|
|
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
|
|
|
|
|
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Next segment still within same mesh cell, adjust the per-segment
|
|
|
|
|
// slope and intercept to compute next z height.
|
|
|
|
@ -718,4 +662,3 @@
|
|
|
|
|
#endif // UBL_DELTA
|
|
|
|
|
|
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
|
|
|
|
|
|