Fix some of the crowded code style. And fixed the conditional. #300

master
daid303 12 years ago
parent 43018a48c4
commit 8f20562f49

@ -435,7 +435,8 @@ void getHighESpeed()
} }
#endif #endif
void check_axes_activity() { void check_axes_activity()
{
unsigned char x_active = 0; unsigned char x_active = 0;
unsigned char y_active = 0; unsigned char y_active = 0;
unsigned char z_active = 0; unsigned char z_active = 0;
@ -444,10 +445,12 @@ void check_axes_activity() {
unsigned char tail_fan_speed = 0; unsigned char tail_fan_speed = 0;
block_t *block; block_t *block;
if(block_buffer_tail != block_buffer_head) { if(block_buffer_tail != block_buffer_head)
{
uint8_t block_index = block_buffer_tail; uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed; tail_fan_speed = block_buffer[block_index].fan_speed;
while(block_index != block_buffer_head) { while(block_index != block_buffer_head)
{
block = &block_buffer[block_index]; block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++; if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++; if(block->steps_y != 0) y_active++;
@ -457,7 +460,8 @@ void check_axes_activity() {
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
} }
} }
else { else
{
#if FAN_PIN > -1 #if FAN_PIN > -1
if (FanSpeed != 0){ if (FanSpeed != 0){
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
@ -467,17 +471,20 @@ void check_axes_activity() {
if((DISABLE_X) && (x_active == 0)) disable_x(); if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y(); if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z(); if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) { if((DISABLE_E) && (e_active == 0))
{
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
} }
#if FAN_PIN > -1 #if FAN_PIN > -1
if((FanSpeed == 0) && (fan_speed ==0)) { if((FanSpeed == 0) && (fan_speed ==0))
{
analogWrite(FAN_PIN, 0); analogWrite(FAN_PIN, 0);
} }
if (FanSpeed != 0 && tail_fan_speed !=0) { if (FanSpeed != 0 && tail_fan_speed !=0)
{
analogWrite(FAN_PIN,tail_fan_speed); analogWrite(FAN_PIN,tail_fan_speed);
} }
#endif #endif
@ -498,7 +505,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// If the buffer is full: good! That means we are well ahead of the robot. // If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer. // Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) { while(block_buffer_tail == next_buffer_head)
{
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
LCD_STATUS; LCD_STATUS;
@ -515,12 +523,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS]) if(target[E_AXIS]!=position[E_AXIS])
{
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude) if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
{ {
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
#ifdef PREVENT_LENGTHY_EXTRUDE #ifdef PREVENT_LENGTHY_EXTRUDE
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{ {
@ -529,6 +539,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
#endif #endif
}
#endif #endif
// Prepare to set up new block // Prepare to set up new block
@ -547,24 +558,29 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block // Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) { if (block->step_event_count <= dropsegments)
{
return; return;
}; }
block->fan_speed = FanSpeed; block->fan_speed = FanSpeed;
// Compute direction bits for this block // Compute direction bits for this block
block->direction_bits = 0; block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) { if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<<X_AXIS); block->direction_bits |= (1<<X_AXIS);
} }
if (target[Y_AXIS] < position[Y_AXIS]) { if (target[Y_AXIS] < position[Y_AXIS])
{
block->direction_bits |= (1<<Y_AXIS); block->direction_bits |= (1<<Y_AXIS);
} }
if (target[Z_AXIS] < position[Z_AXIS]) { if (target[Z_AXIS] < position[Z_AXIS])
{
block->direction_bits |= (1<<Z_AXIS); block->direction_bits |= (1<<Z_AXIS);
} }
if (target[E_AXIS] < position[E_AXIS]) { if (target[E_AXIS] < position[E_AXIS])
{
block->direction_bits |= (1<<E_AXIS); block->direction_bits |= (1<<E_AXIS);
} }
@ -578,16 +594,19 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
#endif #endif
// Enable all // Enable all
if(block->steps_e != 0) { if(block->steps_e != 0)
{
enable_e0(); enable_e0();
enable_e1(); enable_e1();
enable_e2(); enable_e2();
} }
if (block->steps_e == 0) { if (block->steps_e == 0)
{
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate; if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
} }
else { else
{
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate; if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
} }
@ -596,10 +615,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0; delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) { if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
{
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);
} }
else { else
{
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
} }
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
@ -611,14 +632,17 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN #ifdef OLD_SLOWDOWN
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
#endif #endif
#ifdef SLOWDOWN #ifdef SLOWDOWN
// segment time im micro seconds // segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second); unsigned long segment_time = lround(1000000.0/inverse_second);
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) { if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. {
if (segment_time < minsegmenttime)
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
} }
} }
@ -632,7 +656,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Calculate and limit speed in mm/sec for each axis // Calculate and limit speed in mm/sec for each axis
float current_speed[4]; float current_speed[4];
float speed_factor = 1.0; //factor <=1 do decrease speed float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) { for(int i=0; i < 4; i++)
{
current_speed[i] = delta_mm[i] * inverse_second; current_speed[i] = delta_mm[i] * inverse_second;
if(fabs(current_speed[i]) > max_feedrate[i]) if(fabs(current_speed[i]) > max_feedrate[i])
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
@ -646,18 +671,22 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
unsigned char direction_change = block->direction_bits ^ old_direction_bits; unsigned char direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits; old_direction_bits = block->direction_bits;
if((direction_change & (1<<X_AXIS)) == 0) { if((direction_change & (1<<X_AXIS)) == 0)
{
x_segment_time[0] += segment_time; x_segment_time[0] += segment_time;
} }
else { else
{
x_segment_time[2] = x_segment_time[1]; x_segment_time[2] = x_segment_time[1];
x_segment_time[1] = x_segment_time[0]; x_segment_time[1] = x_segment_time[0];
x_segment_time[0] = segment_time; x_segment_time[0] = segment_time;
} }
if((direction_change & (1<<Y_AXIS)) == 0) { if((direction_change & (1<<Y_AXIS)) == 0)
{
y_segment_time[0] += segment_time; y_segment_time[0] += segment_time;
} }
else { else
{
y_segment_time[2] = y_segment_time[1]; y_segment_time[2] = y_segment_time[1];
y_segment_time[1] = y_segment_time[0]; y_segment_time[1] = y_segment_time[0];
y_segment_time[0] = segment_time; y_segment_time[0] = segment_time;
@ -665,12 +694,15 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2])); long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2])); long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time); long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME); if(min_xy_segment_time < MAX_FREQ_TIME)
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
#endif #endif
// Correct the speed // Correct the speed
if( speed_factor < 1.0) { if( speed_factor < 1.0)
for(unsigned char i=0; i < 4; i++) { {
for(unsigned char i=0; i < 4; i++)
{
current_speed[i] *= speed_factor; current_speed[i] *= speed_factor;
} }
block->nominal_speed *= speed_factor; block->nominal_speed *= speed_factor;
@ -679,10 +711,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// Compute and limit the acceleration rate for the trapezoid generator. // Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count/block->millimeters; float steps_per_mm = block->step_event_count/block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) { if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
{
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
else { else
{
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
// Limit acceleration per axis // Limit acceleration per axis
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])

Loading…
Cancel
Save