|
|
@ -435,7 +435,8 @@ void getHighESpeed()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
void check_axes_activity() {
|
|
|
|
void check_axes_activity()
|
|
|
|
|
|
|
|
{
|
|
|
|
unsigned char x_active = 0;
|
|
|
|
unsigned char x_active = 0;
|
|
|
|
unsigned char y_active = 0;
|
|
|
|
unsigned char y_active = 0;
|
|
|
|
unsigned char z_active = 0;
|
|
|
|
unsigned char z_active = 0;
|
|
|
@ -444,10 +445,12 @@ void check_axes_activity() {
|
|
|
|
unsigned char tail_fan_speed = 0;
|
|
|
|
unsigned char tail_fan_speed = 0;
|
|
|
|
block_t *block;
|
|
|
|
block_t *block;
|
|
|
|
|
|
|
|
|
|
|
|
if(block_buffer_tail != block_buffer_head) {
|
|
|
|
if(block_buffer_tail != block_buffer_head)
|
|
|
|
|
|
|
|
{
|
|
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
uint8_t block_index = block_buffer_tail;
|
|
|
|
tail_fan_speed = block_buffer[block_index].fan_speed;
|
|
|
|
tail_fan_speed = block_buffer[block_index].fan_speed;
|
|
|
|
while(block_index != block_buffer_head) {
|
|
|
|
while(block_index != block_buffer_head)
|
|
|
|
|
|
|
|
{
|
|
|
|
block = &block_buffer[block_index];
|
|
|
|
block = &block_buffer[block_index];
|
|
|
|
if(block->steps_x != 0) x_active++;
|
|
|
|
if(block->steps_x != 0) x_active++;
|
|
|
|
if(block->steps_y != 0) y_active++;
|
|
|
|
if(block->steps_y != 0) y_active++;
|
|
|
@ -457,7 +460,8 @@ void check_axes_activity() {
|
|
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else
|
|
|
|
|
|
|
|
{
|
|
|
|
#if FAN_PIN > -1
|
|
|
|
#if FAN_PIN > -1
|
|
|
|
if (FanSpeed != 0){
|
|
|
|
if (FanSpeed != 0){
|
|
|
|
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
|
|
|
|
analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
|
|
|
@ -467,17 +471,20 @@ void check_axes_activity() {
|
|
|
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
|
|
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
|
|
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
|
|
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
|
|
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
|
|
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
|
|
|
if((DISABLE_E) && (e_active == 0)) {
|
|
|
|
if((DISABLE_E) && (e_active == 0))
|
|
|
|
|
|
|
|
{
|
|
|
|
disable_e0();
|
|
|
|
disable_e0();
|
|
|
|
disable_e1();
|
|
|
|
disable_e1();
|
|
|
|
disable_e2();
|
|
|
|
disable_e2();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#if FAN_PIN > -1
|
|
|
|
#if FAN_PIN > -1
|
|
|
|
if((FanSpeed == 0) && (fan_speed ==0)) {
|
|
|
|
if((FanSpeed == 0) && (fan_speed ==0))
|
|
|
|
|
|
|
|
{
|
|
|
|
analogWrite(FAN_PIN, 0);
|
|
|
|
analogWrite(FAN_PIN, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (FanSpeed != 0 && tail_fan_speed !=0) {
|
|
|
|
if (FanSpeed != 0 && tail_fan_speed !=0)
|
|
|
|
|
|
|
|
{
|
|
|
|
analogWrite(FAN_PIN,tail_fan_speed);
|
|
|
|
analogWrite(FAN_PIN,tail_fan_speed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
@ -498,7 +505,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
|
|
|
|
|
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
|
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
|
|
// Rest here until there is room in the buffer.
|
|
|
|
// Rest here until there is room in the buffer.
|
|
|
|
while(block_buffer_tail == next_buffer_head) {
|
|
|
|
while(block_buffer_tail == next_buffer_head)
|
|
|
|
|
|
|
|
{
|
|
|
|
manage_heater();
|
|
|
|
manage_heater();
|
|
|
|
manage_inactivity();
|
|
|
|
manage_inactivity();
|
|
|
|
LCD_STATUS;
|
|
|
|
LCD_STATUS;
|
|
|
@ -515,12 +523,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
if(target[E_AXIS]!=position[E_AXIS])
|
|
|
|
if(target[E_AXIS]!=position[E_AXIS])
|
|
|
|
|
|
|
|
{
|
|
|
|
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
|
|
|
|
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
SERIAL_ECHO_START;
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
|
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
|
|
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
|
|
|
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
|
|
|
{
|
|
|
|
{
|
|
|
@ -529,6 +539,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Prepare to set up new block
|
|
|
|
// Prepare to set up new block
|
|
|
@ -547,24 +558,29 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
|
|
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
|
|
|
|
|
|
|
|
|
|
|
// Bail if this is a zero-length block
|
|
|
|
// Bail if this is a zero-length block
|
|
|
|
if (block->step_event_count <= dropsegments) {
|
|
|
|
if (block->step_event_count <= dropsegments)
|
|
|
|
|
|
|
|
{
|
|
|
|
return;
|
|
|
|
return;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
block->fan_speed = FanSpeed;
|
|
|
|
block->fan_speed = FanSpeed;
|
|
|
|
|
|
|
|
|
|
|
|
// Compute direction bits for this block
|
|
|
|
// Compute direction bits for this block
|
|
|
|
block->direction_bits = 0;
|
|
|
|
block->direction_bits = 0;
|
|
|
|
if (target[X_AXIS] < position[X_AXIS]) {
|
|
|
|
if (target[X_AXIS] < position[X_AXIS])
|
|
|
|
|
|
|
|
{
|
|
|
|
block->direction_bits |= (1<<X_AXIS);
|
|
|
|
block->direction_bits |= (1<<X_AXIS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (target[Y_AXIS] < position[Y_AXIS]) {
|
|
|
|
if (target[Y_AXIS] < position[Y_AXIS])
|
|
|
|
|
|
|
|
{
|
|
|
|
block->direction_bits |= (1<<Y_AXIS);
|
|
|
|
block->direction_bits |= (1<<Y_AXIS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (target[Z_AXIS] < position[Z_AXIS]) {
|
|
|
|
if (target[Z_AXIS] < position[Z_AXIS])
|
|
|
|
|
|
|
|
{
|
|
|
|
block->direction_bits |= (1<<Z_AXIS);
|
|
|
|
block->direction_bits |= (1<<Z_AXIS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (target[E_AXIS] < position[E_AXIS]) {
|
|
|
|
if (target[E_AXIS] < position[E_AXIS])
|
|
|
|
|
|
|
|
{
|
|
|
|
block->direction_bits |= (1<<E_AXIS);
|
|
|
|
block->direction_bits |= (1<<E_AXIS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -578,16 +594,19 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Enable all
|
|
|
|
// Enable all
|
|
|
|
if(block->steps_e != 0) {
|
|
|
|
if(block->steps_e != 0)
|
|
|
|
|
|
|
|
{
|
|
|
|
enable_e0();
|
|
|
|
enable_e0();
|
|
|
|
enable_e1();
|
|
|
|
enable_e1();
|
|
|
|
enable_e2();
|
|
|
|
enable_e2();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if (block->steps_e == 0) {
|
|
|
|
if (block->steps_e == 0)
|
|
|
|
|
|
|
|
{
|
|
|
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
|
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else
|
|
|
|
|
|
|
|
{
|
|
|
|
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
|
|
|
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
@ -596,10 +615,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
|
|
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
|
|
|
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
|
|
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
|
|
|
|
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
|
|
|
|
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
|
|
|
|
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
|
|
|
|
|
|
|
{
|
|
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
|
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else
|
|
|
|
|
|
|
|
{
|
|
|
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
|
|
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
|
|
@ -611,14 +632,17 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
|
|
|
|
|
|
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
|
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
|
|
|
#ifdef OLD_SLOWDOWN
|
|
|
|
#ifdef OLD_SLOWDOWN
|
|
|
|
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
|
|
|
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
|
|
|
|
|
|
|
|
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef SLOWDOWN
|
|
|
|
#ifdef SLOWDOWN
|
|
|
|
// segment time im micro seconds
|
|
|
|
// segment time im micro seconds
|
|
|
|
unsigned long segment_time = lround(1000000.0/inverse_second);
|
|
|
|
unsigned long segment_time = lround(1000000.0/inverse_second);
|
|
|
|
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
|
|
|
|
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
|
|
|
|
if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
|
|
{
|
|
|
|
|
|
|
|
if (segment_time < minsegmenttime)
|
|
|
|
|
|
|
|
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
|
|
|
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
|
|
|
|
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
@ -632,7 +656,8 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
// Calculate and limit speed in mm/sec for each axis
|
|
|
|
float current_speed[4];
|
|
|
|
float current_speed[4];
|
|
|
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
|
|
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
|
|
|
for(int i=0; i < 4; i++) {
|
|
|
|
for(int i=0; i < 4; i++)
|
|
|
|
|
|
|
|
{
|
|
|
|
current_speed[i] = delta_mm[i] * inverse_second;
|
|
|
|
current_speed[i] = delta_mm[i] * inverse_second;
|
|
|
|
if(fabs(current_speed[i]) > max_feedrate[i])
|
|
|
|
if(fabs(current_speed[i]) > max_feedrate[i])
|
|
|
|
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
|
|
|
|
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
|
|
|
@ -646,18 +671,22 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
|
|
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
|
|
|
old_direction_bits = block->direction_bits;
|
|
|
|
old_direction_bits = block->direction_bits;
|
|
|
|
|
|
|
|
|
|
|
|
if((direction_change & (1<<X_AXIS)) == 0) {
|
|
|
|
if((direction_change & (1<<X_AXIS)) == 0)
|
|
|
|
|
|
|
|
{
|
|
|
|
x_segment_time[0] += segment_time;
|
|
|
|
x_segment_time[0] += segment_time;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else
|
|
|
|
|
|
|
|
{
|
|
|
|
x_segment_time[2] = x_segment_time[1];
|
|
|
|
x_segment_time[2] = x_segment_time[1];
|
|
|
|
x_segment_time[1] = x_segment_time[0];
|
|
|
|
x_segment_time[1] = x_segment_time[0];
|
|
|
|
x_segment_time[0] = segment_time;
|
|
|
|
x_segment_time[0] = segment_time;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if((direction_change & (1<<Y_AXIS)) == 0) {
|
|
|
|
if((direction_change & (1<<Y_AXIS)) == 0)
|
|
|
|
|
|
|
|
{
|
|
|
|
y_segment_time[0] += segment_time;
|
|
|
|
y_segment_time[0] += segment_time;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else
|
|
|
|
|
|
|
|
{
|
|
|
|
y_segment_time[2] = y_segment_time[1];
|
|
|
|
y_segment_time[2] = y_segment_time[1];
|
|
|
|
y_segment_time[1] = y_segment_time[0];
|
|
|
|
y_segment_time[1] = y_segment_time[0];
|
|
|
|
y_segment_time[0] = segment_time;
|
|
|
|
y_segment_time[0] = segment_time;
|
|
|
@ -665,12 +694,15 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
|
|
|
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
|
|
|
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
|
|
|
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
|
|
|
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
|
|
|
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
|
|
|
if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
|
|
|
if(min_xy_segment_time < MAX_FREQ_TIME)
|
|
|
|
|
|
|
|
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Correct the speed
|
|
|
|
// Correct the speed
|
|
|
|
if( speed_factor < 1.0) {
|
|
|
|
if( speed_factor < 1.0)
|
|
|
|
for(unsigned char i=0; i < 4; i++) {
|
|
|
|
{
|
|
|
|
|
|
|
|
for(unsigned char i=0; i < 4; i++)
|
|
|
|
|
|
|
|
{
|
|
|
|
current_speed[i] *= speed_factor;
|
|
|
|
current_speed[i] *= speed_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
block->nominal_speed *= speed_factor;
|
|
|
|
block->nominal_speed *= speed_factor;
|
|
|
@ -679,10 +711,12 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|
|
|
|
|
|
|
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
|
|
|
float steps_per_mm = block->step_event_count/block->millimeters;
|
|
|
|
float steps_per_mm = block->step_event_count/block->millimeters;
|
|
|
|
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
|
|
|
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
|
|
|
|
|
|
|
|
{
|
|
|
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else
|
|
|
|
|
|
|
|
{
|
|
|
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
|
|
|
// Limit acceleration per axis
|
|
|
|
// Limit acceleration per axis
|
|
|
|
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
|
|
|
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
|
|
|