Cleanup and fix G33

master
Scott Lahteine 7 years ago
parent e642a64b68
commit 91abf07087

@ -5503,11 +5503,13 @@ void home_all_axes() { gcode_G28(true); }
if (!_0p_calibration) { if (!_0p_calibration) {
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
z_at_pt[CEN] +=
#if ENABLED(PROBE_MANUALLY) #if ENABLED(PROBE_MANUALLY)
z_at_pt[CEN] += lcd_probe_pt(0, 0); lcd_probe_pt(0, 0)
#else #else
z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false); probe_pt(dx, dy, stow_after_each, 1, false)
#endif #endif
;
} }
if (_7p_calibration) { // probe extra center points if (_7p_calibration) { // probe extra center points
@ -5516,11 +5518,13 @@ void home_all_axes() { gcode_G28(true); }
I_LOOP_CAL_PT(axis, start, steps) { I_LOOP_CAL_PT(axis, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * 0.1; r = delta_calibration_radius * 0.1;
z_at_pt[CEN] +=
#if ENABLED(PROBE_MANUALLY) #if ENABLED(PROBE_MANUALLY)
z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r); lcd_probe_pt(cos(a) * r, sin(a) * r)
#else #else
z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
#endif #endif
;
} }
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
} }
@ -5543,30 +5547,23 @@ void home_all_axes() { gcode_G28(true); }
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)), const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)), r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
interpol = fmod(axis, 1); interpol = fmod(axis, 1);
const float z_temp =
#if ENABLED(PROBE_MANUALLY) #if ENABLED(PROBE_MANUALLY)
float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r); lcd_probe_pt(cos(a) * r, sin(a) * r)
#else #else
float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
#endif #endif
;
// split probe point to neighbouring calibration points // split probe point to neighbouring calibration points
z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90))); z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
} }
zig_zag = !zig_zag; zig_zag = !zig_zag;
} }
if (_7p_intermed_points) if (_7p_intermed_points)
LOOP_CAL_RAD(axis) { LOOP_CAL_RAD(axis)
/*
// average intermediate points to towers and opposites - only required with _7P_STEP >= 2
for (int8_t i = 1; i < _7P_STEP; i++) {
const float interpol = i * (1.0 / _7P_STEP);
z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1]
+ z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90)));
}
*/
z_at_pt[axis] /= _7P_STEP / steps; z_at_pt[axis] /= _7P_STEP / steps;
} }
}
float S1 = z_at_pt[CEN], float S1 = z_at_pt[CEN],
@ -10708,7 +10705,7 @@ inline void invalid_extruder_error(const uint8_t e) {
#endif #endif
} }
FORCE_INLINE void fanmux_init(void){ FORCE_INLINE void fanmux_init(void) {
SET_OUTPUT(FANMUX0_PIN); SET_OUTPUT(FANMUX0_PIN);
#if PIN_EXISTS(FANMUX1) #if PIN_EXISTS(FANMUX1)
SET_OUTPUT(FANMUX1_PIN); SET_OUTPUT(FANMUX1_PIN);

Loading…
Cancel
Save