|
|
|
@ -5503,11 +5503,13 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
if (!_0p_calibration) {
|
|
|
|
|
|
|
|
|
|
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
|
|
|
|
|
z_at_pt[CEN] +=
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[CEN] += lcd_probe_pt(0, 0);
|
|
|
|
|
lcd_probe_pt(0, 0)
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[CEN] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
|
|
|
probe_pt(dx, dy, stow_after_each, 1, false)
|
|
|
|
|
#endif
|
|
|
|
|
;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (_7p_calibration) { // probe extra center points
|
|
|
|
@ -5516,11 +5518,13 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
I_LOOP_CAL_PT(axis, start, steps) {
|
|
|
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
|
|
|
r = delta_calibration_radius * 0.1;
|
|
|
|
|
z_at_pt[CEN] +=
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
z_at_pt[CEN] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
|
|
|
#else
|
|
|
|
|
z_at_pt[CEN] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
|
|
|
|
|
#endif
|
|
|
|
|
;
|
|
|
|
|
}
|
|
|
|
|
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
|
|
|
|
|
}
|
|
|
|
@ -5543,30 +5547,23 @@ void home_all_axes() { gcode_G28(true); }
|
|
|
|
|
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
|
|
|
|
|
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
|
|
|
|
|
interpol = fmod(axis, 1);
|
|
|
|
|
const float z_temp =
|
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
|
float z_temp = lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
|
|
|
lcd_probe_pt(cos(a) * r, sin(a) * r)
|
|
|
|
|
#else
|
|
|
|
|
float z_temp = probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
|
|
|
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
|
|
|
|
|
#endif
|
|
|
|
|
;
|
|
|
|
|
// split probe point to neighbouring calibration points
|
|
|
|
|
z_at_pt[round(axis - interpol + NPP - 1) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
|
|
|
|
|
z_at_pt[round(axis - interpol) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
|
|
|
|
|
z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
|
|
|
|
|
z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
|
|
|
|
|
}
|
|
|
|
|
zig_zag = !zig_zag;
|
|
|
|
|
}
|
|
|
|
|
if (_7p_intermed_points)
|
|
|
|
|
LOOP_CAL_RAD(axis) {
|
|
|
|
|
/*
|
|
|
|
|
// average intermediate points to towers and opposites - only required with _7P_STEP >= 2
|
|
|
|
|
for (int8_t i = 1; i < _7P_STEP; i++) {
|
|
|
|
|
const float interpol = i * (1.0 / _7P_STEP);
|
|
|
|
|
z_at_pt[axis] += (z_at_pt[(axis + NPP - i - 1) % NPP + 1]
|
|
|
|
|
+ z_at_pt[axis + i]) * sq(cos(RADIANS(interpol * 90)));
|
|
|
|
|
}
|
|
|
|
|
*/
|
|
|
|
|
LOOP_CAL_RAD(axis)
|
|
|
|
|
z_at_pt[axis] /= _7P_STEP / steps;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float S1 = z_at_pt[CEN],
|
|
|
|
|