Merge remote-tracking branch 'upstream/Development' into Development

master
chrono 10 years ago
commit a375d648c7

@ -5,16 +5,9 @@
#include "Marlin.h"
#ifdef BLINKM
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
#include "BlinkM.h"
void SendColors(byte red, byte grn, byte blu)
{
void SendColors(byte red, byte grn, byte blu) {
Wire.begin();
Wire.beginTransmission(0x09);
Wire.write('o'); //to disable ongoing script, only needs to be used once

@ -2,13 +2,12 @@
BlinkM.h
Library header file for BlinkM library
*/
#if (ARDUINO >= 100)
# include "Arduino.h"
#if ARDUINO >= 100
#include "Arduino.h"
#else
# include "WProgram.h"
#include "WProgram.h"
#endif
#include "Wire.h"
void SendColors(byte red, byte grn, byte blu);

@ -1,5 +1,5 @@
#ifndef CONFIG_STORE_H
#define CONFIG_STORE_H
#ifndef CONFIGURATIONSTORE_H
#define CONFIGURATIONSTORE_H
#include "Configuration.h"
@ -19,4 +19,4 @@ void Config_ResetDefault();
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif
#endif // __CONFIG_STORE_H
#endif //CONFIGURATIONSTORE_H

@ -181,7 +181,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
void FlushSerialRequestResend();
void ClearToSend();

@ -1734,16 +1734,6 @@ void process_commands()
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
int back_probe_bed_position=BACK_PROBE_BED_POSITION;
int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
if (code_seen('L')) left_probe_bed_position=(int)code_value();
if (code_seen('R')) right_probe_bed_position=(int)code_value();
if (code_seen('B')) back_probe_bed_position=(int)code_value();
if (code_seen('F')) front_probe_bed_position=(int)code_value();
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
#ifdef Z_PROBE_SLED
dock_sled(false);
@ -1764,6 +1754,16 @@ void process_commands()
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
int back_probe_bed_position=BACK_PROBE_BED_POSITION;
int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
if (code_seen('L')) left_probe_bed_position=(int)code_value();
if (code_seen('R')) right_probe_bed_position=(int)code_value();
if (code_seen('B')) back_probe_bed_position=(int)code_value();
if (code_seen('F')) front_probe_bed_position=(int)code_value();
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);

@ -7,256 +7,194 @@
#ifdef SDSUPPORT
CardReader::CardReader()
{
CardReader::CardReader() {
filesize = 0;
sdpos = 0;
sdprinting = false;
cardOK = false;
saving = false;
logging = false;
autostart_atmillis=0;
workDirDepth = 0;
file_subcall_ctr=0;
file_subcall_ctr = 0;
memset(workDirParents, 0, sizeof(workDirParents));
autostart_stilltocheck=true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
autostart_index=0;
autostart_stilltocheck = true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
autostart_index = 0;
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
WRITE(SDPOWER, HIGH);
#endif //SDPOWER
autostart_atmillis=millis()+5000;
autostart_atmillis = millis() + 5000;
}
char *createFilename(char *buffer,const dir_t &p) //buffer>12characters
{
char *pos=buffer;
for (uint8_t i = 0; i < 11; i++)
{
if (p.name[i] == ' ')continue;
if (i == 8)
{
*pos++='.';
char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
char *pos = buffer;
for (uint8_t i = 0; i < 11; i++) {
if (p.name[i] == ' ') continue;
if (i == 8) *pos++ = '.';
*pos++ = p.name[i];
}
*pos++=p.name[i];
}
*pos++=0;
*pos++ = 0;
return buffer;
}
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/)
{
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
dir_t p;
uint8_t cnt=0;
while (parent.readDir(p, longFilename) > 0)
{
if( DIR_IS_SUBDIR(&p) && lsAction!=LS_Count && lsAction!=LS_GetFilename) // hence LS_SerialPrint
{
uint8_t cnt = 0;
while (parent.readDir(p, longFilename) > 0) {
if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) { // hence LS_SerialPrint
char path[FILENAME_LENGTH*2];
char lfilename[FILENAME_LENGTH];
createFilename(lfilename,p);
createFilename(lfilename, p);
path[0]=0;
if(prepend[0]==0) //avoid leading / if already in prepend
{
strcat(path,"/");
}
strcat(path,prepend);
strcat(path,lfilename);
strcat(path,"/");
path[0] = 0;
if (prepend[0] == 0) strcat(path, "/"); //avoid leading / if already in prepend
strcat(path, prepend);
strcat(path, lfilename);
strcat(path, "/");
//Serial.print(path);
SdFile dir;
if(!dir.open(parent,lfilename, O_READ))
{
if(lsAction==LS_SerialPrint)
{
if (!dir.open(parent, lfilename, O_READ)) {
if (lsAction == LS_SerialPrint) {
SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR);
SERIAL_ECHOLN(lfilename);
}
}
lsDive(path,dir);
lsDive(path, dir);
//close done automatically by destructor of SdFile
}
else
{
else {
char pn0 = p.name[0];
if (pn0 == DIR_NAME_FREE) break;
if (pn0 == DIR_NAME_DELETED || pn0 == '.' || pn0 == '_') continue;
if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue;
char lf0 = longFilename[0];
if (lf0 == '.' || lf0 == '_') continue;
if (lf0 == '.') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
filenameIsDir=DIR_IS_SUBDIR(&p);
filenameIsDir = DIR_IS_SUBDIR(&p);
if(!filenameIsDir)
{
if(p.name[8]!='G') continue;
if(p.name[9]=='~') continue;
}
//if(cnt++!=nr) continue;
createFilename(filename,p);
if(lsAction==LS_SerialPrint)
{
if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue;
//if (cnt++ != nr) continue;
createFilename(filename, p);
if (lsAction == LS_SerialPrint) {
SERIAL_PROTOCOL(prepend);
SERIAL_PROTOCOLLN(filename);
}
else if(lsAction==LS_Count)
{
else if (lsAction == LS_Count) {
nrFiles++;
}
else if(lsAction==LS_GetFilename)
{
else if (lsAction == LS_GetFilename) {
if (match != NULL) {
if (strcasecmp(match, filename) == 0) return;
}
else if (cnt == nrFiles) return;
cnt++;
}
}
}
}
void CardReader::ls()
{
lsAction=LS_SerialPrint;
if(lsAction==LS_Count)
nrFiles=0;
void CardReader::ls() {
lsAction = LS_SerialPrint;
root.rewind();
lsDive("",root);
lsDive("", root);
}
void CardReader::initsd()
{
void CardReader::initsd() {
cardOK = false;
if(root.isOpen())
root.close();
#ifdef SDSLOW
if (!card.init(SPI_HALF_SPEED,SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_HALF_SPEED,LCD_SDSS)
if (root.isOpen()) root.close();
#ifdef SDSLOW
#define SPI_SPEED SPI_HALF_SPEED
#else
#define SPI_SPEED SPI_FULL_SPEED
#endif
)
#else
if (!card.init(SPI_FULL_SPEED,SDSS)
if (!card.init(SPI_SPEED,SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_FULL_SPEED,LCD_SDSS)
&& !card.init(SPI_SPEED, LCD_SDSS)
#endif
)
#endif
{
) {
//if (!card.init(SPI_HALF_SPEED,SDSS))
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL);
}
else if (!volume.init(&card))
{
else if (!volume.init(&card)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL);
}
else if (!root.openRoot(&volume))
{
else if (!root.openRoot(&volume)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL);
}
else
{
else {
cardOK = true;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_CARD_OK);
}
workDir=root;
curDir=&root;
workDir = root;
curDir = &root;
/*
if(!workDir.openRoot(&volume))
{
if (!workDir.openRoot(&volume)) {
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}
*/
}
void CardReader::setroot()
{
/*if(!workDir.openRoot(&volume))
{
void CardReader::setroot() {
/*if (!workDir.openRoot(&volume)) {
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}*/
workDir=root;
curDir=&workDir;
workDir = root;
curDir = &workDir;
}
void CardReader::release()
{
void CardReader::release() {
sdprinting = false;
cardOK = false;
}
void CardReader::startFileprint()
{
if(cardOK)
{
void CardReader::startFileprint() {
if (cardOK) {
sdprinting = true;
}
}
void CardReader::pauseSDPrint()
{
if(sdprinting)
{
sdprinting = false;
}
void CardReader::pauseSDPrint() {
if (sdprinting) sdprinting = false;
}
void CardReader::openLogFile(char* name)
{
void CardReader::openLogFile(char* name) {
logging = true;
openFile(name, false);
}
void CardReader::getAbsFilename(char *t)
{
uint8_t cnt=0;
*t='/';t++;cnt++;
for(uint8_t i=0;i<workDirDepth;i++)
{
void CardReader::getAbsFilename(char *t) {
uint8_t cnt = 0;
*t = '/'; t++; cnt++;
for (uint8_t i = 0; i < workDirDepth; i++) {
workDirParents[i].getFilename(t); //SDBaseFile.getfilename!
while(*t!=0 && cnt< MAXPATHNAMELENGTH)
{t++;cnt++;} //crawl counter forward.
while(*t && cnt < MAXPATHNAMELENGTH) { t++; cnt++; } //crawl counter forward.
}
if(cnt<MAXPATHNAMELENGTH-FILENAME_LENGTH)
if (cnt < MAXPATHNAMELENGTH - FILENAME_LENGTH)
file.getFilename(t);
else
t[0]=0;
t[0] = 0;
}
void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
{
if(!cardOK)
return;
if(file.isOpen()) //replacing current file by new file, or subfile call
{
if(!replace_current)
{
if((int)file_subcall_ctr>(int)SD_PROCEDURE_DEPTH-1)
{
void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) {
if (!cardOK) return;
if (file.isOpen()) { //replacing current file by new file, or subfile call
if (!replace_current) {
if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:");
SERIAL_ERRORLN(SD_PROCEDURE_DEPTH);
@ -275,79 +213,67 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
SERIAL_ECHO(filenames[file_subcall_ctr]);
SERIAL_ECHOPGM("\" pos");
SERIAL_ECHOLN(sdpos);
filespos[file_subcall_ctr]=sdpos;
filespos[file_subcall_ctr] = sdpos;
file_subcall_ctr++;
}
else
{
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now doing file: ");
SERIAL_ECHOLN(name);
}
file.close();
}
else //opening fresh file
{
file_subcall_ctr=0; //resetting procedure depth in case user cancels print while in procedure
else { //opening fresh file
file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now fresh file: ");
SERIAL_ECHOLN(name);
}
sdprinting = false;
SdFile myDir;
curDir=&root;
char *fname=name;
char *dirname_start,*dirname_end;
if(name[0]=='/')
{
dirname_start=strchr(name,'/')+1;
while(dirname_start>0)
{
dirname_end=strchr(dirname_start,'/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start-name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end-name));
if(dirname_end>0 && dirname_end>dirname_start)
{
curDir = &root;
char *fname = name;
char *dirname_start, *dirname_end;
if (name[0] == '/') {
dirname_start = &name[1];
while(dirname_start > 0) {
dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
if (dirname_end > 0 && dirname_end > dirname_start) {
char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end-dirname_start);
subdirname[dirname_end-dirname_start]=0;
strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ))
{
if (!myDir.open(curDir, subdirname, O_READ)) {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM(".");
return;
}
else
{
else {
//SERIAL_ECHOLN("dive ok");
}
curDir=&myDir;
dirname_start=dirname_end+1;
curDir = &myDir;
dirname_start = dirname_end + 1;
}
else // the reminder after all /fsa/fdsa/ is the filename
{
fname=dirname_start;
//SERIAL_ECHOLN("remaider");
else { // the remainder after all /fsa/fdsa/ is the filename
fname = dirname_start;
//SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN(fname);
break;
}
}
}
else //relative path
{
curDir=&workDir;
else { //relative path
curDir = &workDir;
}
if(read)
{
if (file.open(curDir, fname, O_READ))
{
if (read) {
if (file.open(curDir, fname, O_READ)) {
filesize = file.fileSize();
SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED);
SERIAL_PROTOCOL(fname);
@ -359,124 +285,105 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
getfilename(0, fname);
lcd_setstatus(longFilename[0] ? longFilename : fname);
}
else
{
else {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
}
else
{ //write
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
else { //write
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
else
{
else {
saving = true;
SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE);
SERIAL_PROTOCOLLN(name);
lcd_setstatus(fname);
}
}
}
void CardReader::removeFile(char* name)
{
if(!cardOK)
return;
void CardReader::removeFile(char* name) {
if (!cardOK) return;
file.close();
sdprinting = false;
SdFile myDir;
curDir=&root;
char *fname=name;
char *dirname_start,*dirname_end;
if(name[0]=='/')
{
dirname_start=strchr(name,'/')+1;
while(dirname_start>0)
{
dirname_end=strchr(dirname_start,'/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start-name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end-name));
if(dirname_end>0 && dirname_end>dirname_start)
{
curDir = &root;
char *fname = name;
char *dirname_start, *dirname_end;
if (name[0] == '/') {
dirname_start = strchr(name, '/') + 1;
while (dirname_start > 0) {
dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
if (dirname_end > 0 && dirname_end > dirname_start) {
char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end-dirname_start);
subdirname[dirname_end-dirname_start]=0;
strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ))
{
if (!myDir.open(curDir, subdirname, O_READ)) {
SERIAL_PROTOCOLPGM("open failed, File: ");
SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM(".");
return;
}
else
{
else {
//SERIAL_ECHOLN("dive ok");
}
curDir=&myDir;
dirname_start=dirname_end+1;
curDir = &myDir;
dirname_start = dirname_end + 1;
}
else // the reminder after all /fsa/fdsa/ is the filename
{
fname=dirname_start;
//SERIAL_ECHOLN("remaider");
else { // the remainder after all /fsa/fdsa/ is the filename
fname = dirname_start;
//SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN(fname);
break;
}
}
}
else //relative path
{
curDir=&workDir;
else { // relative path
curDir = &workDir;
}
if (file.remove(curDir, fname))
{
if (file.remove(curDir, fname)) {
SERIAL_PROTOCOLPGM("File deleted:");
SERIAL_PROTOCOLLN(fname);
sdpos = 0;
}
else
{
else {
SERIAL_PROTOCOLPGM("Deletion failed, File: ");
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
}
void CardReader::getStatus()
{
if(cardOK){
void CardReader::getStatus() {
if (cardOK) {
SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE);
SERIAL_PROTOCOL(sdpos);
SERIAL_PROTOCOLPGM("/");
SERIAL_PROTOCOLLN(filesize);
}
else{
else {
SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING);
}
}
void CardReader::write_command(char *buf)
{
void CardReader::write_command(char *buf) {
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL)
{
if ((npos = strchr(buf, 'N')) != NULL) {
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
@ -484,162 +391,129 @@ void CardReader::write_command(char *buf)
end[2] = '\n';
end[3] = '\0';
file.write(begin);
if (file.writeError)
{
if (file.writeError) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE);
}
}
void CardReader::checkautostart(bool force)
{
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
void CardReader::checkautostart(bool force) {
if (!force && (!autostart_stilltocheck || autostart_atmillis < millis()))
return;
}
autostart_stilltocheck=false;
if(!cardOK)
{
autostart_stilltocheck = false;
if (!cardOK) {
initsd();
if(!cardOK) //fail
return;
if (!cardOK) return; // fail
}
char autoname[30];
sprintf_P(autoname, PSTR("auto%i.g"), autostart_index);
for(int8_t i=0;i<(int8_t)strlen(autoname);i++)
autoname[i]=tolower(autoname[i]);
for (int8_t i = 0; i < (int8_t)strlen(autoname); i++) autoname[i] = tolower(autoname[i]);
dir_t p;
root.rewind();
bool found=false;
while (root.readDir(p, NULL) > 0)
{
for(int8_t i=0;i<(int8_t)strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
bool found = false;
while (root.readDir(p, NULL) > 0) {
for (int8_t i = 0; i < (int8_t)strlen((char*)p.name); i++) p.name[i] = tolower(p.name[i]);
if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) {
char cmd[30];
sprintf_P(cmd, PSTR("M23 %s"), autoname);
enquecommand(cmd);
enquecommands_P(PSTR("M24"));
found=true;
found = true;
}
}
if(!found)
autostart_index=-1;
if (!found)
autostart_index = -1;
else
autostart_index++;
}
void CardReader::closefile(bool store_location)
{
void CardReader::closefile(bool store_location) {
file.sync();
file.close();
saving = false;
logging = false;
saving = logging = false;
if(store_location)
{
if (store_location) {
//future: store printer state, filename and position for continuing a stopped print
// so one can unplug the printer and continue printing the next day.
}
}
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/)
{
curDir=&workDir;
lsAction=LS_GetFilename;
nrFiles=nr;
/**
* Get the name of a file in the current directory by index
*/
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) {
curDir = &workDir;
lsAction = LS_GetFilename;
nrFiles = nr;
curDir->rewind();
lsDive("",*curDir,match);
lsDive("", *curDir, match);
}
uint16_t CardReader::getnrfilenames()
{
curDir=&workDir;
lsAction=LS_Count;
nrFiles=0;
uint16_t CardReader::getnrfilenames() {
curDir = &workDir;
lsAction = LS_Count;
nrFiles = 0;
curDir->rewind();
lsDive("",*curDir);
lsDive("", *curDir);
//SERIAL_ECHOLN(nrFiles);
return nrFiles;
}
void CardReader::chdir(const char * relpath)
{
void CardReader::chdir(const char * relpath) {
SdFile newfile;
SdFile *parent=&root;
SdFile *parent = &root;
if(workDir.isOpen())
parent=&workDir;
if (workDir.isOpen()) parent = &workDir;
if(!newfile.open(*parent,relpath, O_READ))
{
if (!newfile.open(*parent, relpath, O_READ)) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR);
SERIAL_ECHOLN(relpath);
}
else
{
else {
if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;)
workDirParents[d+1] = workDirParents[d];
workDirParents[0]=*parent;
++workDirDepth;
for (int d = workDirDepth; d--;) workDirParents[d + 1] = workDirParents[d];
workDirParents[0] = *parent;
}
workDir=newfile;
workDir = newfile;
}
}
void CardReader::updir()
{
if(workDirDepth > 0)
{
void CardReader::updir() {
if (workDirDepth > 0) {
--workDirDepth;
workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1];
}
}
void CardReader::printingHasFinished()
{
void CardReader::printingHasFinished() {
st_synchronize();
if(file_subcall_ctr>0) //heading up to a parent file that called current as a procedure.
{
if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
file.close();
file_subcall_ctr--;
openFile(filenames[file_subcall_ctr],true,true);
openFile(filenames[file_subcall_ctr], true, true);
setIndex(filespos[file_subcall_ctr]);
startFileprint();
}
else
{
else {
quickStop();
file.close();
sdprinting = false;
if(SD_FINISHED_STEPPERRELEASE)
{
if (SD_FINISHED_STEPPERRELEASE) {
//finishAndDisableSteppers();
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
}
autotempShutdown();
}
}
#endif //SDSUPPORT

@ -3,12 +3,12 @@
#ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10
#define MAX_DIR_DEPTH 10 // Maximum folder depth
#include "SdFile.h"
enum LsAction {LS_SerialPrint,LS_Count,LS_GetFilename};
class CardReader
{
enum LsAction { LS_SerialPrint, LS_Count, LS_GetFilename };
class CardReader {
public:
CardReader();
@ -33,7 +33,6 @@ public:
void getAbsFilename(char *t);
void ls();
void chdir(const char * relpath);
void updir();
@ -41,56 +40,52 @@ public:
FORCE_INLINE bool isFileOpen() { return file.isOpen(); }
FORCE_INLINE bool eof() { return sdpos>=filesize ;};
FORCE_INLINE int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();};
FORCE_INLINE void setIndex(long index) {sdpos = index;file.seekSet(index);};
FORCE_INLINE uint8_t percentDone(){if(!isFileOpen()) return 0; if(filesize) return sdpos/((filesize+99)/100); else return 0;};
FORCE_INLINE char* getWorkDirName(){workDir.getFilename(filename);return filename;};
FORCE_INLINE bool eof() { return sdpos >= filesize; }
FORCE_INLINE int16_t get() { sdpos = file.curPosition(); return (int16_t)file.read(); }
FORCE_INLINE void setIndex(long index) { sdpos = index; file.seekSet(index); }
FORCE_INLINE uint8_t percentDone() { return (isFileOpen() && filesize) ? sdpos / ((filesize + 99) / 100) : 0; }
FORCE_INLINE char* getWorkDirName() { workDir.getFilename(filename); return filename; }
public:
bool saving;
bool logging;
bool sdprinting;
bool cardOK;
char filename[FILENAME_LENGTH];
char longFilename[LONG_FILENAME_LENGTH];
bool filenameIsDir;
bool saving, logging, sdprinting, cardOK, filenameIsDir;
char filename[FILENAME_LENGTH], longFilename[LONG_FILENAME_LENGTH];
int autostart_index;
private:
SdFile root,*curDir,workDir,workDirParents[MAX_DIR_DEPTH];
SdFile root, *curDir, workDir, workDirParents[MAX_DIR_DEPTH];
uint16_t workDirDepth;
Sd2Card card;
SdVolume volume;
SdFile file;
#define SD_PROCEDURE_DEPTH 1
#define MAXPATHNAMELENGTH (FILENAME_LENGTH*MAX_DIR_DEPTH+MAX_DIR_DEPTH+1)
#define MAXPATHNAMELENGTH (FILENAME_LENGTH*MAX_DIR_DEPTH + MAX_DIR_DEPTH + 1)
uint8_t file_subcall_ctr;
uint32_t filespos[SD_PROCEDURE_DEPTH];
char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH];
uint32_t filesize;
//int16_t n;
unsigned long autostart_atmillis;
uint32_t sdpos ;
uint32_t sdpos;
bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
LsAction lsAction; //stored for recursion.
int16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
uint16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
char* diveDirName;
void lsDive(const char *prepend, SdFile parent, const char * const match=NULL);
};
extern CardReader card;
#define IS_SD_PRINTING (card.sdprinting)
#if (SDCARDDETECT > -1)
# ifdef SDCARDDETECTINVERTED
# define IS_SD_INSERTED (READ(SDCARDDETECT)!=0)
# else
# define IS_SD_INSERTED (READ(SDCARDDETECT)==0)
# endif //SDCARDTETECTINVERTED
#ifdef SDCARDDETECTINVERTED
#define IS_SD_INSERTED (READ(SDCARDDETECT) != 0)
#else
#define IS_SD_INSERTED (READ(SDCARDDETECT) == 0)
#endif
#else
//If we don't have a card detect line, aways asume the card is inserted
# define IS_SD_INSERTED true
//No card detect line? Assume the card is inserted.
#define IS_SD_INSERTED true
#endif
#else
@ -98,4 +93,5 @@ extern CardReader card;
#define IS_SD_PRINTING (false)
#endif //SDSUPPORT
#endif
#endif //__CARDREADER_H

@ -1,25 +1,25 @@
#include "Configuration.h"
#ifdef DIGIPOT_I2C
#include "Stream.h"
#include "utility/twi.h"
#include "Wire.h"
// Settings for the I2C based DIGIPOT (MCP4451) on Azteeg X3 Pro
#if MB(5DPRINT)
#define DIGIPOT_I2C_FACTOR 117.96
#define DIGIPOT_I2C_MAX_CURRENT 1.736
#define DIGIPOT_I2C_FACTOR 117.96
#define DIGIPOT_I2C_MAX_CURRENT 1.736
#else
#define DIGIPOT_I2C_FACTOR 106.7
#define DIGIPOT_I2C_MAX_CURRENT 2.5
#define DIGIPOT_I2C_FACTOR 106.7
#define DIGIPOT_I2C_MAX_CURRENT 2.5
#endif
static byte current_to_wiper( float current ){
static byte current_to_wiper(float current) {
return byte(ceil(float((DIGIPOT_I2C_FACTOR*current))));
}
static void i2c_send(byte addr, byte a, byte b)
{
static void i2c_send(byte addr, byte a, byte b) {
Wire.beginTransmission(addr);
Wire.write(a);
Wire.write(b);
@ -27,33 +27,32 @@ static void i2c_send(byte addr, byte a, byte b)
}
// This is for the MCP4451 I2C based digipot
void digipot_i2c_set_current( int channel, float current )
{
void digipot_i2c_set_current(int channel, float current) {
current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT);
// these addresses are specific to Azteeg X3 Pro, can be set to others,
// In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1
byte addr= 0x2C; // channel 0-3
if(channel >= 4) {
addr= 0x2E; // channel 4-7
channel-= 4;
byte addr = 0x2C; // channel 0-3
if (channel >= 4) {
addr = 0x2E; // channel 4-7
channel -= 4;
}
// Initial setup
i2c_send( addr, 0x40, 0xff );
i2c_send( addr, 0xA0, 0xff );
i2c_send(addr, 0x40, 0xff);
i2c_send(addr, 0xA0, 0xff);
// Set actual wiper value
byte addresses[4] = { 0x00, 0x10, 0x60, 0x70 };
i2c_send( addr, addresses[channel], current_to_wiper(current) );
i2c_send(addr, addresses[channel], current_to_wiper(current));
}
void digipot_i2c_init()
{
void digipot_i2c_init() {
const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS;
Wire.begin();
// setup initial currents as defined in Configuration_adv.h
for(int i=0;i<=sizeof(digipot_motor_current)/sizeof(float);i++) {
for(int i = 0; i <= sizeof(digipot_motor_current) / sizeof(float); i++) {
digipot_i2c_set_current(i, digipot_motor_current[i]);
}
}
#endif
#endif //DIGIPOT_I2C

@ -159,6 +159,43 @@
#define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!"
// temperature.cpp strings
#define MSG_PID_AUTOTUNE "PID Autotune"
#define MSG_PID_AUTOTUNE_START MSG_PID_AUTOTUNE " start"
#define MSG_PID_AUTOTUNE_FAILED MSG_PID_AUTOTUNE " failed!"
#define MSG_PID_BAD_EXTRUDER_NUM MSG_PID_AUTOTUNE_FAILED " Bad extruder number"
#define MSG_PID_TEMP_TOO_HIGH MSG_PID_AUTOTUNE_FAILED " Temperature too high"
#define MSG_PID_TIMEOUT MSG_PID_AUTOTUNE_FAILED " timeout"
#define MSG_BIAS " bias: "
#define MSG_D " d: "
#define MSG_MIN " min: "
#define MSG_MAX " max: "
#define MSG_KU " Ku: "
#define MSG_TU " Tu: "
#define MSG_CLASSIC_PID " Classic PID "
#define MSG_KP " Kp: "
#define MSG_KI " Ki: "
#define MSG_KD " Kd: "
#define MSG_OK_B "ok B:"
#define MSG_OK_T "ok T:"
#define MSG_AT " @:"
#define MSG_PID_AUTOTUNE_FINISHED MSG_PID_AUTOTUNE " finished! Put the last Kp, Ki and Kd constants from above into Configuration.h"
#define MSG_PID_DEBUG " PID_DEBUG "
#define MSG_PID_DEBUG_INPUT ": Input "
#define MSG_PID_DEBUG_OUTPUT " Output "
#define MSG_PID_DEBUG_PTERM " pTerm "
#define MSG_PID_DEBUG_ITERM " iTerm "
#define MSG_PID_DEBUG_DTERM " dTerm "
#define MSG_HEATING_FAILED "Heating failed"
#define MSG_EXTRUDER_SWITCHED_OFF "Extruder switched off. Temperature difference between temp sensors is too high !"
#define MSG_INVALID_EXTRUDER_NUM " - Invalid extruder number !"
#define MSG_THERMAL_RUNAWAY_STOP "Thermal Runaway, system stopped! Heater_ID: "
#define MSG_SWITCHED_OFF_MAX " switched off. MAXTEMP triggered !!"
#define MSG_MINTEMP_EXTRUDER_OFF ": Extruder switched off. MINTEMP triggered !"
#define MSG_MAXTEMP_EXTRUDER_OFF ": Extruder" MSG_SWITCHED_OFF_MAX
#define MSG_MAXTEMP_BED_OFF "Heated bed" MSG_SWITCHED_OFF_MAX
// LCD Menu Messages
// Add your own character. Reference: https://github.com/MarlinFirmware/Marlin/pull/1434 photos

@ -383,6 +383,24 @@
#ifndef MSG_ENDSTOP_ABORT
#define MSG_ENDSTOP_ABORT "Endstop abort"
#endif
#ifndef MSG_HEATING_FAILED_LCD
#define MSG_HEATING_FAILED_LCD "Heating failed"
#endif
#ifndef MSG_ERR_REDUNDANT_TEMP
#define MSG_ERR_REDUNDANT_TEMP "Err: REDUNDANT TEMP ERROR"
#endif
#ifndef MSG_THERMAL_RUNAWAY
#define MSG_THERMAL_RUNAWAY "THERMAL RUNAWAY"
#endif
#ifndef MSG_ERR_MAXTEMP
#define MSG_ERR_MAXTEMP "Err: MAXTEMP"
#endif
#ifndef MSG_ERR_MINTEMP
#define MSG_ERR_MINTEMP "Err: MINTEMP"
#endif
#ifndef MSG_ERR_MAXTEMP_BED
#define MSG_ERR_MAXTEMP_BED "Err: MAXTEMP BED"
#endif
#ifdef DELTA_CALIBRATION_MENU
#ifndef MSG_DELTA_CALIBRATE

@ -6,6 +6,10 @@
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif
#if EXTRUDERS > 3
#error RUMBA supports up to 3 extruders. Comment this line to keep going.
#endif
#define X_STEP_PIN 17
#define X_DIR_PIN 16
#define X_ENABLE_PIN 48

@ -399,24 +399,24 @@ ISR(TIMER1_COMPA_vect)
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
if(check_endstops) // check X and Y Endstops
{
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
#else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
#endif
{
CHECK_ENDSTOPS
{
{ // -direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
@ -425,20 +425,17 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
}
else
{ // +direction
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
@ -447,19 +444,18 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
#endif
{
CHECK_ENDSTOPS
{
{ // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
@ -467,20 +463,19 @@ ISR(TIMER1_COMPA_vect)
old_y_min_endstop = y_min_endstop;
#endif
}
}
else
{ // +direction
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
}
}

File diff suppressed because it is too large Load Diff

@ -85,55 +85,25 @@ extern float current_temperature_bed;
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
return current_temperature[extruder];
};
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
FORCE_INLINE float degBed() { return current_temperature_bed; }
#ifdef SHOW_TEMP_ADC_VALUES
FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
return current_temperature_raw[extruder];
};
FORCE_INLINE float rawBedTemp() {
return current_temperature_bed_raw;
};
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif
FORCE_INLINE float degBed() {
return current_temperature_bed;
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return target_temperature[extruder];
};
FORCE_INLINE float degTargetBed() {
return target_temperature_bed;
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_temperature_bed = celsius;
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_temperature[extruder] > current_temperature[extruder];
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }
FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
FORCE_INLINE bool isHeatingBed() {
return target_temperature_bed > current_temperature_bed;
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_temperature[extruder] < current_temperature[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_temperature_bed < current_temperature_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
#define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0)
@ -141,38 +111,36 @@ FORCE_INLINE bool isCoolingBed() {
#define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1
#define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1)
#define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1)
#else
#define setTargetHotend1(_celsius) do{}while(0)
#define setTargetHotend1(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 2
#define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2)
#define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2)
#else
#define setTargetHotend2(_celsius) do{}while(0)
#define setTargetHotend2(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 3
#define degHotend3() degHotend(3)
#define degTargetHotend3() degTargetHotend(3)
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
#define isHeatingHotend3() isHeatingHotend(3)
#define isCoolingHotend3() isCoolingHotend(3)
#define degHotend3() degHotend(3)
#define degTargetHotend3() degTargetHotend(3)
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
#define isHeatingHotend3() isHeatingHotend(3)
#define isCoolingHotend3() isCoolingHotend(3)
#else
#define setTargetHotend3(_celsius) do{}while(0)
#define setTargetHotend3(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 4
#error Invalid number of extruders
#error Invalid number of extruders
#endif
int getHeaterPower(int heater);
void disable_heater();
void setWatch();
@ -189,15 +157,14 @@ static bool thermal_runaway = false;
#endif
#endif
FORCE_INLINE void autotempShutdown(){
#ifdef AUTOTEMP
if(autotemp_enabled)
{
autotemp_enabled=false;
if(degTargetHotend(active_extruder)>autotemp_min)
setTargetHotend(0,active_extruder);
FORCE_INLINE void autotempShutdown() {
#ifdef AUTOTEMP
if (autotemp_enabled) {
autotemp_enabled = false;
if (degTargetHotend(active_extruder) > autotemp_min)
setTargetHotend(0, active_extruder);
}
#endif
#endif
}
void PID_autotune(float temp, int extruder, int ncycles);

Loading…
Cancel
Save