Two index finding functions for MBL

master
Scott Lahteine 9 years ago
parent 678cbad76a
commit a4ed988c60

@ -3008,7 +3008,7 @@ inline void gcode_G28() {
return; return;
} }
int8_t ix, iy; int8_t px, py;
float z; float z;
switch (state) { switch (state) {
@ -3023,10 +3023,10 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOLPGM("\nZ offset: ");
SERIAL_PROTOCOL_F(mbl.z_offset, 5); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
SERIAL_PROTOCOLLNPGM("\nMeasured points:"); SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = 0; y < MESH_NUM_Y_POINTS; y++) { for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) { for (px = 0; px < MESH_NUM_X_POINTS; px++) {
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
} }
SERIAL_EOL; SERIAL_EOL;
} }
@ -3058,8 +3058,8 @@ inline void gcode_G28() {
} }
// If there's another point to sample, move there with optional lift. // If there's another point to sample, move there with optional lift.
if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
mbl.zigzag(probe_point, ix, iy); mbl.zigzag(probe_point, px, py);
_mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy)); _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
probe_point++; probe_point++;
} }
else { else {
@ -3082,8 +3082,8 @@ inline void gcode_G28() {
case MeshSet: case MeshSet:
if (code_seen('X')) { if (code_seen('X')) {
ix = code_value_long() - 1; px = code_value_long() - 1;
if (ix < 0 || ix >= MESH_NUM_X_POINTS) { if (px < 0 || px >= MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n"); SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
return; return;
} }
@ -3093,8 +3093,8 @@ inline void gcode_G28() {
return; return;
} }
if (code_seen('Y')) { if (code_seen('Y')) {
iy = code_value_long() - 1; py = code_value_long() - 1;
if (iy < 0 || iy >= MESH_NUM_Y_POINTS) { if (py < 0 || py >= MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n"); SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
return; return;
} }
@ -3110,7 +3110,7 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPGM("Z not entered.\n"); SERIAL_PROTOCOLPGM("Z not entered.\n");
return; return;
} }
mbl.z_values[iy][ix] = z; mbl.z_values[py][px] = z;
break; break;
case MeshSetZOffset: case MeshSetZOffset:
@ -5905,36 +5905,35 @@ inline void gcode_M410() { stepper.quick_stop(); }
*/ */
inline void gcode_M421() { inline void gcode_M421() {
float x = 0, y = 0, z = 0; float x = 0, y = 0, z = 0;
int8_t i = 0, j = 0; int8_t px = 0, py = 0;
bool err = false, hasX, hasY, hasZ, hasI, hasJ; bool err = false, hasX, hasY, hasZ, hasI, hasJ;
if ((hasX = code_seen('X'))) x = code_value(); if ((hasX = code_seen('X'))) x = code_value();
if ((hasY = code_seen('Y'))) y = code_value(); if ((hasY = code_seen('Y'))) y = code_value();
if ((hasI = code_seen('I'))) i = code_value();
if ((hasJ = code_seen('J'))) j = code_value();
if ((hasZ = code_seen('Z'))) z = code_value(); if ((hasZ = code_seen('Z'))) z = code_value();
if ((hasI = code_seen('I'))) px = code_value();
if ((hasJ = code_seen('J'))) py = code_value();
if (hasX && hasY && hasZ) { if (hasX && hasY && hasZ) {
int8_t ix = mbl.select_x_index(x), px = mbl.probe_index_x(x);
iy = mbl.select_y_index(y); py = mbl.probe_index_y(y);
if (ix >= 0 && iy >= 0) if (px >= 0 && py >= 0)
mbl.set_z(ix, iy, z); mbl.set_z(px, py, z);
else { else {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
} }
} }
else if (hasI && hasJ && hasZ) { else if (hasI && hasJ && hasZ) {
if (i >= 0 && i < MESH_NUM_X_POINTS && j >= 0 && j < MESH_NUM_Y_POINTS) if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
mbl.set_z(i, j, z); mbl.set_z(px, py, z);
else { else {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
} }
} }
else else {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ); SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
} }
@ -7303,52 +7302,52 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
set_current_to_destination(); set_current_to_destination();
return; return;
} }
int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]); int pcx = mbl.cel_index_x(current_position[X_AXIS] - home_offset[X_AXIS]);
int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]); int pcy = mbl.cel_index_y(current_position[Y_AXIS] - home_offset[Y_AXIS]);
int ix = mbl.select_x_index(x - home_offset[X_AXIS]); int cx = mbl.cel_index_x(x - home_offset[X_AXIS]);
int iy = mbl.select_y_index(y - home_offset[Y_AXIS]); int cy = mbl.cel_index_y(y - home_offset[Y_AXIS]);
pix = min(pix, MESH_NUM_X_POINTS - 2); NOMORE(pcx, MESH_NUM_X_POINTS - 2);
piy = min(piy, MESH_NUM_Y_POINTS - 2); NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
ix = min(ix, MESH_NUM_X_POINTS - 2); NOMORE(cx, MESH_NUM_X_POINTS - 2);
iy = min(iy, MESH_NUM_Y_POINTS - 2); NOMORE(cy, MESH_NUM_Y_POINTS - 2);
if (pix == ix && piy == iy) { if (pcx == cx && pcy == cy) {
// Start and end on same mesh square // Start and end on same mesh square
planner.buffer_line(x, y, z, e, feed_rate, extruder); planner.buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination(); set_current_to_destination();
return; return;
} }
float nx, ny, nz, ne, normalized_dist; float nx, ny, nz, ne, normalized_dist;
if (ix > pix && TEST(x_splits, ix)) { if (cx > pcx && TEST(x_splits, cx)) {
nx = mbl.get_x(ix) + home_offset[X_AXIS]; nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
CBI(x_splits, ix); CBI(x_splits, cx);
} }
else if (ix < pix && TEST(x_splits, pix)) { else if (cx < pcx && TEST(x_splits, pcx)) {
nx = mbl.get_x(pix) + home_offset[X_AXIS]; nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
CBI(x_splits, pix); CBI(x_splits, pcx);
} }
else if (iy > piy && TEST(y_splits, iy)) { else if (cy > pcy && TEST(y_splits, cy)) {
ny = mbl.get_y(iy) + home_offset[Y_AXIS]; ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
CBI(y_splits, iy); CBI(y_splits, cy);
} }
else if (iy < piy && TEST(y_splits, piy)) { else if (cy < pcy && TEST(y_splits, pcy)) {
ny = mbl.get_y(piy) + home_offset[Y_AXIS]; ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
CBI(y_splits, piy); CBI(y_splits, pcy);
} }
else { else {
// Already split on a border // Already split on a border

@ -733,13 +733,13 @@ void Config_PrintSettings(bool forReplay) {
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS); SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS); SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
SERIAL_EOL; SERIAL_EOL;
for (uint8_t y = 0; y < MESH_NUM_Y_POINTS; y++) { for (uint8_t py = 0; py < MESH_NUM_Y_POINTS; py++) {
for (uint8_t x = 0; x < MESH_NUM_X_POINTS; x++) { for (uint8_t px = 0; px < MESH_NUM_X_POINTS; px++) {
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M421 X", mbl.get_x(x)); SERIAL_ECHOPAIR(" M421 X", mbl.get_probe_x(px));
SERIAL_ECHOPAIR(" Y", mbl.get_y(y)); SERIAL_ECHOPAIR(" Y", mbl.get_probe_y(py));
SERIAL_ECHOPGM(" Z"); SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
SERIAL_EOL; SERIAL_EOL;
} }
} }

@ -37,33 +37,45 @@
void reset(); void reset();
static FORCE_INLINE float get_x(int8_t i) { return MESH_MIN_X + (MESH_X_DIST) * i; } static FORCE_INLINE float get_probe_x(int8_t i) { return MESH_MIN_X + (MESH_X_DIST) * i; }
static FORCE_INLINE float get_y(int8_t i) { return MESH_MIN_Y + (MESH_Y_DIST) * i; } static FORCE_INLINE float get_probe_y(int8_t i) { return MESH_MIN_Y + (MESH_Y_DIST) * i; }
void set_z(int8_t ix, int8_t iy, float z) { z_values[iy][ix] = z; } void set_z(int8_t px, int8_t py, float z) { z_values[py][px] = z; }
inline void zigzag(int8_t index, int8_t &ix, int8_t &iy) { inline void zigzag(int8_t index, int8_t &px, int8_t &py) {
ix = index % (MESH_NUM_X_POINTS); px = index % (MESH_NUM_X_POINTS);
iy = index / (MESH_NUM_X_POINTS); py = index / (MESH_NUM_X_POINTS);
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // Zig zag if (py & 1) px = (MESH_NUM_X_POINTS - 1) - px; // Zig zag
} }
void set_zigzag_z(int8_t index, float z) { void set_zigzag_z(int8_t index, float z) {
int8_t ix, iy; int8_t px, py;
zigzag(index, ix, iy); zigzag(index, px, py);
set_z(ix, iy, z); set_z(px, py, z);
}
int8_t cel_index_x(float x) {
int8_t cx = 1;
while (x > get_probe_x(cx) && cx < MESH_NUM_X_POINTS - 1) cx++; // For 3x3 range is 1 to 2
return cx - 1; // so this will return 0 - 1
}
int8_t cel_index_y(float y) {
int8_t cy = 1;
while (y > get_probe_y(cy) && cy < MESH_NUM_Y_POINTS - 1) cy++;
return cy - 1;
} }
int8_t select_x_index(float x) { int8_t probe_index_x(float x) {
for (uint8_t i = MESH_NUM_X_POINTS; i--;) for (int8_t px = MESH_NUM_X_POINTS; px--;)
if (fabs(x - get_x(i)) <= (MESH_X_DIST) / 2) if (fabs(x - get_probe_x(px)) <= (MESH_X_DIST) / 2)
return i; return px;
return -1; return -1;
} }
int8_t select_y_index(float y) { int8_t probe_index_y(float y) {
for (uint8_t i = MESH_NUM_Y_POINTS; i--;) for (int8_t py = MESH_NUM_Y_POINTS; py--;)
if (fabs(y - get_y(i)) <= (MESH_Y_DIST) / 2) if (fabs(y - get_probe_y(py)) <= (MESH_Y_DIST) / 2)
return i; return py;
return -1; return -1;
} }
@ -74,18 +86,18 @@
} }
float get_z(float x0, float y0) { float get_z(float x0, float y0) {
int8_t x_index = select_x_index(x0); int8_t cx = cel_index_x(x0),
int8_t y_index = select_y_index(y0); cy = cel_index_y(y0);
if (x_index < 0 || y_index < 0) return z_offset; if (cx < 0 || cy < 0) return z_offset;
float z1 = calc_z0(x0, float z1 = calc_z0(x0,
get_x(x_index), z_values[y_index][x_index], get_probe_x(cx), z_values[cy][cx],
get_x(x_index + 1), z_values[y_index][x_index + 1]); get_probe_x(cx + 1), z_values[cy][cx + 1]);
float z2 = calc_z0(x0, float z2 = calc_z0(x0,
get_x(x_index), z_values[y_index + 1][x_index], get_probe_x(cx), z_values[cy + 1][cx],
get_x(x_index + 1), z_values[y_index + 1][x_index + 1]); get_probe_x(cx + 1), z_values[cy + 1][cx + 1]);
float z0 = calc_z0(y0, float z0 = calc_z0(y0,
get_y(y_index), z1, get_probe_y(cy), z1,
get_y(y_index + 1), z2); get_probe_y(cy + 1), z2);
return z0 + z_offset; return z0 + z_offset;
} }
}; };

@ -1013,9 +1013,9 @@ void lcd_cooldown() {
lcd_goto_menu(_lcd_level_bed_moving); lcd_goto_menu(_lcd_level_bed_moving);
// _mbl_goto_xy runs the menu loop until the move is done // _mbl_goto_xy runs the menu loop until the move is done
int8_t ix, iy; int8_t px, py;
mbl.zigzag(_lcd_level_bed_position, ix, iy); mbl.zigzag(_lcd_level_bed_position, px, py);
_mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy)); _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
// After the blocking function returns, change menus // After the blocking function returns, change menus
lcd_goto_menu(_lcd_level_bed_get_z); lcd_goto_menu(_lcd_level_bed_get_z);

Loading…
Cancel
Save