Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin.git into Marlin_v1

Conflicts:
	Marlin/Marlin_main.cpp
master
Nicolas Rossi 12 years ago
commit a54fe2d73c

@ -282,9 +282,12 @@
#endif
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
const bool X_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop.
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS

@ -312,7 +312,12 @@ LDFLAGS = -lm
# Programming support using avrdude. Settings and variables.
AVRDUDE_PORT = $(UPLOAD_PORT)
AVRDUDE_WRITE_FLASH = -U flash:w:$(BUILD_DIR)/$(TARGET).hex:i
AVRDUDE_FLAGS = -D -C $(ARDUINO_INSTALL_DIR)/hardware/tools/avr/etc/avrdude.conf \
ifeq ($(shell uname -s), Linux)
AVRDUDE_CONF = $(ARDUINO_INSTALL_DIR)/hardware/tools/avrdude.conf
else
AVRDUDE_CONF = $(ARDUINO_INSTALL_DIR)/hardware/tools/avr/etc/avrdude.conf
endif
AVRDUDE_FLAGS = -D -C $(AVRDUDE_CONF) \
-p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER) \
-b $(UPLOAD_RATE)

@ -51,22 +51,22 @@
#define MYSERIAL MSerial
#endif
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x);
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y);
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x));
#define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');}
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MYSERIAL.write('\n');}
#define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
#define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
#define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
#define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n'))
#define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n'))
const char errormagic[] PROGMEM ="Error:";
const char echomagic[] PROGMEM ="echo:";
#define SERIAL_ERROR_START serialprintPGM(errormagic);
#define SERIAL_ERROR_START (serialprintPGM(errormagic))
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHO_START serialprintPGM(echomagic);
#define SERIAL_ECHO_START (serialprintPGM(echomagic))
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)

@ -1542,27 +1542,27 @@ void process_commands()
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
break;
//TODO: update for all axis, use for loop

@ -278,9 +278,12 @@
#endif
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool X_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MIN_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool X_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Y_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic of the endstop.
// deltas never have min endstops
#define DISABLE_MIN_ENDSTOPS

@ -388,7 +388,7 @@ ISR(TIMER1_COMPA_vect)
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
@ -408,7 +408,7 @@ ISR(TIMER1_COMPA_vect)
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
@ -428,7 +428,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
@ -442,7 +442,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
@ -464,7 +464,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS
{
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
@ -485,7 +485,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS
{
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;

@ -244,7 +244,7 @@ void PID_autotune(float temp, int extruder, int ncycles)
Kp = 0.6*Ku;
Ki = 2*Kp/Tu;
Kd = Kp*Tu/8;
SERIAL_PROTOCOLLNPGM(" Clasic PID ")
SERIAL_PROTOCOLLNPGM(" Clasic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
@ -436,10 +436,9 @@ void manage_heater()
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
temp_dState[e] = pid_input;
pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
}
temp_dState[e] = pid_input;
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP

Loading…
Cancel
Save