Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin into Marlin_v1 Conflicts: Marlin/Marlin.pde Marlin/ultralcd.hmaster
parent
02b9eceead
commit
a9c7da06e3
@ -1,629 +1,747 @@
|
|||||||
/*
|
/*
|
||||||
planner.c - buffers movement commands and manages the acceleration profile plan
|
planner.c - buffers movement commands and manages the acceleration profile plan
|
||||||
Part of Grbl
|
Part of Grbl
|
||||||
|
|
||||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||||
|
|
||||||
Grbl is free software: you can redistribute it and/or modify
|
Grbl is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
Grbl is distributed in the hope that it will be useful,
|
Grbl is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
/* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
|
||||||
|
|
||||||
/*
|
/*
|
||||||
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||||||
|
|
||||||
s == speed, a == acceleration, t == time, d == distance
|
s == speed, a == acceleration, t == time, d == distance
|
||||||
|
|
||||||
Basic definitions:
|
Basic definitions:
|
||||||
|
|
||||||
Speed[s_, a_, t_] := s + (a*t)
|
Speed[s_, a_, t_] := s + (a*t)
|
||||||
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||||||
|
|
||||||
Distance to reach a specific speed with a constant acceleration:
|
Distance to reach a specific speed with a constant acceleration:
|
||||||
|
|
||||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||||||
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||||||
|
|
||||||
Speed after a given distance of travel with constant acceleration:
|
Speed after a given distance of travel with constant acceleration:
|
||||||
|
|
||||||
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||||||
m -> Sqrt[2 a d + s^2]
|
m -> Sqrt[2 a d + s^2]
|
||||||
|
|
||||||
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||||||
|
|
||||||
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||||||
from initial speed s1 without ever stopping at a plateau:
|
from initial speed s1 without ever stopping at a plateau:
|
||||||
|
|
||||||
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||||||
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||||||
|
|
||||||
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
|
||||||
//#include <inttypes.h>
|
//#include <inttypes.h>
|
||||||
//#include <math.h>
|
//#include <math.h>
|
||||||
//#include <stdlib.h>
|
//#include <stdlib.h>
|
||||||
|
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
#include "Configuration.h"
|
#include "Configuration.h"
|
||||||
#include "pins.h"
|
#include "pins.h"
|
||||||
#include "fastio.h"
|
#include "fastio.h"
|
||||||
#include "planner.h"
|
#include "planner.h"
|
||||||
#include "stepper.h"
|
#include "stepper.h"
|
||||||
#include "temperature.h"
|
#include "temperature.h"
|
||||||
#include "ultralcd.h"
|
#include "ultralcd.h"
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================public variables ============================
|
//=============================public variables ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
|
|
||||||
unsigned long minsegmenttime;
|
unsigned long minsegmenttime;
|
||||||
float max_feedrate[4]; // set the max speeds
|
float max_feedrate[4]; // set the max speeds
|
||||||
float axis_steps_per_unit[4];
|
float axis_steps_per_unit[4];
|
||||||
long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
|
unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
|
||||||
float minimumfeedrate;
|
float minimumfeedrate;
|
||||||
float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
|
float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
|
||||||
float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
|
float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
|
||||||
float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
|
float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
|
||||||
float max_z_jerk;
|
float max_z_jerk;
|
||||||
float mintravelfeedrate;
|
float mintravelfeedrate;
|
||||||
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||||
|
|
||||||
// The current position of the tool in absolute steps
|
// The current position of the tool in absolute steps
|
||||||
long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
|
long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
|
||||||
|
static float previous_speed[4]; // Speed of previous path line segment
|
||||||
#ifdef AUTOTEMP
|
static float previous_nominal_speed; // Nominal speed of previous path line segment
|
||||||
float high_e_speed=0;
|
|
||||||
#endif
|
#ifdef AUTOTEMP
|
||||||
|
float high_e_speed=0;
|
||||||
|
#endif
|
||||||
//===========================================================================
|
|
||||||
//=============================private variables ============================
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
//=============================private variables ============================
|
||||||
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
//===========================================================================
|
||||||
static volatile unsigned char block_buffer_tail; // Index of the block to process now
|
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
||||||
|
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||||
|
static volatile unsigned char block_buffer_tail; // Index of the block to process now
|
||||||
|
|
||||||
//===========================================================================
|
// Used for the frequency limit
|
||||||
//=============================functions ============================
|
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
||||||
//===========================================================================
|
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
|
||||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
static long y_segment_time[3]={0,0,0};
|
||||||
|
|
||||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
// Returns the index of the next block in the ring buffer
|
||||||
// given acceleration:
|
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
||||||
inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
static int8_t next_block_index(int8_t block_index) {
|
||||||
if (acceleration!=0) {
|
block_index++;
|
||||||
return((target_rate*target_rate-initial_rate*initial_rate)/
|
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
|
||||||
(2.0*acceleration));
|
return(block_index);
|
||||||
}
|
}
|
||||||
else {
|
|
||||||
return 0.0; // acceleration was 0, set acceleration distance to 0
|
|
||||||
}
|
// Returns the index of the previous block in the ring buffer
|
||||||
}
|
static int8_t prev_block_index(int8_t block_index) {
|
||||||
|
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
|
||||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
block_index--;
|
||||||
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
return(block_index);
|
||||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
}
|
||||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
|
||||||
|
//===========================================================================
|
||||||
inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
//=============================functions ============================
|
||||||
if (acceleration!=0) {
|
//===========================================================================
|
||||||
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
|
||||||
(4.0*acceleration) );
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||||
}
|
// given acceleration:
|
||||||
else {
|
inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
||||||
return 0.0; // acceleration was 0, set intersection distance to 0
|
if (acceleration!=0) {
|
||||||
}
|
return((target_rate*target_rate-initial_rate*initial_rate)/
|
||||||
}
|
(2.0*acceleration));
|
||||||
|
}
|
||||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
else {
|
||||||
|
return 0.0; // acceleration was 0, set acceleration distance to 0
|
||||||
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
|
}
|
||||||
if(block->busy == true) return; // If block is busy then bail out.
|
}
|
||||||
float entry_factor = entry_speed / block->nominal_speed;
|
|
||||||
float exit_factor = exit_speed / block->nominal_speed;
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||||
long initial_rate = ceil(block->nominal_rate*entry_factor);
|
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||||||
long final_rate = ceil(block->nominal_rate*exit_factor);
|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||||
|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||||
#ifdef ADVANCE
|
|
||||||
long initial_advance = block->advance*entry_factor*entry_factor;
|
inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
||||||
long final_advance = block->advance*exit_factor*exit_factor;
|
if (acceleration!=0) {
|
||||||
#endif // ADVANCE
|
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||||||
|
(4.0*acceleration) );
|
||||||
// Limit minimal step rate (Otherwise the timer will overflow.)
|
}
|
||||||
if(initial_rate <120) initial_rate=120;
|
else {
|
||||||
if(final_rate < 120) final_rate=120;
|
return 0.0; // acceleration was 0, set intersection distance to 0
|
||||||
|
}
|
||||||
// Calculate the acceleration steps
|
}
|
||||||
long acceleration = block->acceleration_st;
|
|
||||||
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||||
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
|
|
||||||
// Calculate the size of Plateau of Nominal Rate.
|
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
|
||||||
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
|
||||||
|
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
||||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
|
||||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||||||
// in order to reach the final_rate exactly at the end of this block.
|
if(initial_rate <120) {initial_rate=120; }
|
||||||
if (plateau_steps < 0) {
|
if(final_rate < 120) {final_rate=120; }
|
||||||
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
|
|
||||||
plateau_steps = 0;
|
long acceleration = block->acceleration_st;
|
||||||
}
|
int32_t accelerate_steps =
|
||||||
|
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
|
||||||
long decelerate_after = accelerate_steps+plateau_steps;
|
int32_t decelerate_steps =
|
||||||
|
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
|
||||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
|
||||||
if(block->busy == false) { // Don't update variables if block is busy.
|
// Calculate the size of Plateau of Nominal Rate.
|
||||||
block->accelerate_until = accelerate_steps;
|
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||||
block->decelerate_after = decelerate_after;
|
|
||||||
block->initial_rate = initial_rate;
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||||
block->final_rate = final_rate;
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||||
#ifdef ADVANCE
|
// in order to reach the final_rate exactly at the end of this block.
|
||||||
block->initial_advance = initial_advance;
|
if (plateau_steps < 0) {
|
||||||
block->final_advance = final_advance;
|
accelerate_steps = ceil(
|
||||||
#endif //ADVANCE
|
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
|
||||||
}
|
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
|
||||||
CRITICAL_SECTION_END;
|
accelerate_steps = min(accelerate_steps,block->step_event_count);
|
||||||
}
|
plateau_steps = 0;
|
||||||
|
}
|
||||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
|
||||||
// acceleration within the allotted distance.
|
#ifdef ADVANCE
|
||||||
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
long initial_advance = block->advance*entry_factor*entry_factor;
|
||||||
return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance);
|
long final_advance = block->advance*exit_factor*exit_factor;
|
||||||
}
|
#endif // ADVANCE
|
||||||
|
|
||||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
// block->accelerate_until = accelerate_steps;
|
||||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
||||||
// velocities of the respective blocks.
|
|
||||||
inline float junction_jerk(block_t *before, block_t *after) {
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||||
return sqrt(
|
if(block->busy == false) { // Don't update variables if block is busy.
|
||||||
pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
|
block->accelerate_until = accelerate_steps;
|
||||||
}
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
||||||
|
block->initial_rate = initial_rate;
|
||||||
// Return the safe speed which is max_jerk/2, e.g. the
|
block->final_rate = final_rate;
|
||||||
// speed under which you cannot exceed max_jerk no matter what you do.
|
#ifdef ADVANCE
|
||||||
float safe_speed(block_t *block) {
|
block->initial_advance = initial_advance;
|
||||||
float safe_speed;
|
block->final_advance = final_advance;
|
||||||
safe_speed = max_xy_jerk/2;
|
#endif //ADVANCE
|
||||||
if(abs(block->speed_z) > max_z_jerk/2)
|
}
|
||||||
safe_speed = max_z_jerk/2;
|
CRITICAL_SECTION_END;
|
||||||
if (safe_speed > block->nominal_speed)
|
}
|
||||||
safe_speed = block->nominal_speed;
|
|
||||||
return safe_speed;
|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||||
}
|
// acceleration within the allotted distance.
|
||||||
|
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
return sqrt(target_velocity*target_velocity-2*acceleration*distance);
|
||||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
}
|
||||||
if(!current) {
|
|
||||||
return;
|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||||
}
|
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||||
|
// velocities of the respective blocks.
|
||||||
float entry_speed = current->nominal_speed;
|
//inline float junction_jerk(block_t *before, block_t *after) {
|
||||||
float exit_factor;
|
// return sqrt(
|
||||||
float exit_speed;
|
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
|
||||||
if (next) {
|
//}
|
||||||
exit_speed = next->entry_speed;
|
|
||||||
}
|
|
||||||
else {
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||||
exit_speed = safe_speed(current);
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||||
}
|
if(!current) { return; }
|
||||||
|
|
||||||
// Calculate the entry_factor for the current block.
|
if (next) {
|
||||||
if (previous) {
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
||||||
// Reduce speed so that junction_jerk is within the maximum allowed
|
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
||||||
float jerk = junction_jerk(previous, current);
|
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
||||||
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
|
if (current->entry_speed != current->max_entry_speed) {
|
||||||
entry_speed = safe_speed(current);
|
|
||||||
}
|
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
||||||
else if (jerk > max_xy_jerk) {
|
// for max allowable speed if block is decelerating and nominal length is false.
|
||||||
entry_speed = (max_xy_jerk/jerk) * entry_speed;
|
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
||||||
}
|
current->entry_speed = min( current->max_entry_speed,
|
||||||
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
|
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
||||||
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
|
} else {
|
||||||
}
|
current->entry_speed = current->max_entry_speed;
|
||||||
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
}
|
||||||
if (entry_speed > exit_speed) {
|
current->recalculate_flag = true;
|
||||||
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
|
|
||||||
if (max_entry_speed < entry_speed) {
|
}
|
||||||
entry_speed = max_entry_speed;
|
} // Skip last block. Already initialized and set for recalculation.
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||||
else {
|
// implements the reverse pass.
|
||||||
entry_speed = safe_speed(current);
|
void planner_reverse_pass() {
|
||||||
}
|
char block_index = block_buffer_head;
|
||||||
// Store result
|
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
||||||
current->entry_speed = entry_speed;
|
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
||||||
}
|
block_t *block[3] = { NULL, NULL, NULL };
|
||||||
|
while(block_index != block_buffer_tail) {
|
||||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
block_index = prev_block_index(block_index);
|
||||||
// implements the reverse pass.
|
block[2]= block[1];
|
||||||
void planner_reverse_pass() {
|
block[1]= block[0];
|
||||||
char block_index = block_buffer_head;
|
block[0] = &block_buffer[block_index];
|
||||||
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||||
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
}
|
||||||
block_t *block[5] = {
|
}
|
||||||
NULL, NULL, NULL, NULL, NULL };
|
}
|
||||||
while(block_index != block_buffer_tail) {
|
|
||||||
block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1);
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||||
block[2]= block[1];
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||||
block[1]= block[0];
|
if(!previous) { return; }
|
||||||
block[0] = &block_buffer[block_index];
|
|
||||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
||||||
}
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
||||||
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
||||||
}
|
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
||||||
}
|
if (!previous->nominal_length_flag) {
|
||||||
|
if (previous->entry_speed < current->entry_speed) {
|
||||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
double entry_speed = min( current->entry_speed,
|
||||||
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
|
||||||
if(!current) {
|
|
||||||
return;
|
// Check for junction speed change
|
||||||
}
|
if (current->entry_speed != entry_speed) {
|
||||||
if(previous) {
|
current->entry_speed = entry_speed;
|
||||||
// If the previous block is an acceleration block, but it is not long enough to
|
current->recalculate_flag = true;
|
||||||
// complete the full speed change within the block, we need to adjust out entry
|
}
|
||||||
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
}
|
||||||
// the previous block.
|
}
|
||||||
if(previous->entry_speed < current->entry_speed) {
|
}
|
||||||
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
|
|
||||||
if (max_entry_speed < current->entry_speed) {
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||||
current->entry_speed = max_entry_speed;
|
// implements the forward pass.
|
||||||
}
|
void planner_forward_pass() {
|
||||||
}
|
char block_index = block_buffer_tail;
|
||||||
}
|
block_t *block[3] = { NULL, NULL, NULL };
|
||||||
}
|
|
||||||
|
while(block_index != block_buffer_head) {
|
||||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
block[0] = block[1];
|
||||||
// implements the forward pass.
|
block[1] = block[2];
|
||||||
void planner_forward_pass() {
|
block[2] = &block_buffer[block_index];
|
||||||
char block_index = block_buffer_tail;
|
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||||||
block_t *block[3] = {
|
block_index = next_block_index(block_index);
|
||||||
NULL, NULL, NULL };
|
}
|
||||||
|
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||||
while(block_index != block_buffer_head) {
|
}
|
||||||
block[0] = block[1];
|
|
||||||
block[1] = block[2];
|
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
||||||
block[2] = &block_buffer[block_index];
|
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
// updating the blocks.
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
void planner_recalculate_trapezoids() {
|
||||||
}
|
int8_t block_index = block_buffer_tail;
|
||||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
block_t *current;
|
||||||
}
|
block_t *next = NULL;
|
||||||
|
|
||||||
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
while(block_index != block_buffer_head) {
|
||||||
// entry_factor for each junction. Must be called by planner_recalculate() after
|
current = next;
|
||||||
// updating the blocks.
|
next = &block_buffer[block_index];
|
||||||
void planner_recalculate_trapezoids() {
|
if (current) {
|
||||||
char block_index = block_buffer_tail;
|
// Recalculate if current block entry or exit junction speed has changed.
|
||||||
block_t *current;
|
if (current->recalculate_flag || next->recalculate_flag) {
|
||||||
block_t *next = NULL;
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||||
while(block_index != block_buffer_head) {
|
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
|
||||||
current = next;
|
next->entry_speed/current->nominal_speed);
|
||||||
next = &block_buffer[block_index];
|
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
||||||
if (current) {
|
}
|
||||||
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
|
}
|
||||||
}
|
block_index = next_block_index( block_index );
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
}
|
||||||
}
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||||
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
|
if(next != NULL) {
|
||||||
}
|
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
||||||
|
MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
||||||
// Recalculates the motion plan according to the following algorithm:
|
next->recalculate_flag = false;
|
||||||
//
|
}
|
||||||
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
}
|
||||||
// so that:
|
|
||||||
// a. The junction jerk is within the set limit
|
// Recalculates the motion plan according to the following algorithm:
|
||||||
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
//
|
||||||
// acceleration.
|
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
||||||
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
// so that:
|
||||||
// a. The speed increase within one block would require faster accelleration than the one, true
|
// a. The junction jerk is within the set limit
|
||||||
// constant acceleration.
|
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||||||
//
|
// acceleration.
|
||||||
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||||||
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
// a. The speed increase within one block would require faster accelleration than the one, true
|
||||||
// the set limit. Finally it will:
|
// constant acceleration.
|
||||||
//
|
//
|
||||||
// 3. Recalculate trapezoids for all blocks.
|
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||||||
|
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||||||
void planner_recalculate() {
|
// the set limit. Finally it will:
|
||||||
planner_reverse_pass();
|
//
|
||||||
planner_forward_pass();
|
// 3. Recalculate trapezoids for all blocks.
|
||||||
planner_recalculate_trapezoids();
|
|
||||||
}
|
void planner_recalculate() {
|
||||||
|
planner_reverse_pass();
|
||||||
void plan_init() {
|
planner_forward_pass();
|
||||||
block_buffer_head = 0;
|
planner_recalculate_trapezoids();
|
||||||
block_buffer_tail = 0;
|
}
|
||||||
memset(position, 0, sizeof(position)); // clear position
|
|
||||||
}
|
void plan_init() {
|
||||||
|
block_buffer_head = 0;
|
||||||
|
block_buffer_tail = 0;
|
||||||
void plan_discard_current_block() {
|
memset(position, 0, sizeof(position)); // clear position
|
||||||
if (block_buffer_head != block_buffer_tail) {
|
previous_speed[0] = 0.0;
|
||||||
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
previous_speed[1] = 0.0;
|
||||||
}
|
previous_speed[2] = 0.0;
|
||||||
}
|
previous_speed[3] = 0.0;
|
||||||
|
previous_nominal_speed = 0.0;
|
||||||
block_t *plan_get_current_block() {
|
}
|
||||||
if (block_buffer_head == block_buffer_tail) {
|
|
||||||
return(NULL);
|
|
||||||
}
|
void plan_discard_current_block() {
|
||||||
block_t *block = &block_buffer[block_buffer_tail];
|
if (block_buffer_head != block_buffer_tail) {
|
||||||
block->busy = true;
|
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
||||||
return(block);
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef AUTOTEMP
|
block_t *plan_get_current_block() {
|
||||||
void getHighESpeed()
|
if (block_buffer_head == block_buffer_tail) {
|
||||||
{
|
return(NULL);
|
||||||
if(degTargetHotend0()+2<AUTOTEMP_MIN) //probably temperature set to zero.
|
}
|
||||||
return; //do nothing
|
block_t *block = &block_buffer[block_buffer_tail];
|
||||||
float high=0;
|
block->busy = true;
|
||||||
char block_index = block_buffer_tail;
|
return(block);
|
||||||
|
}
|
||||||
while(block_index != block_buffer_head) {
|
|
||||||
float se=block_buffer[block_index].speed_e;
|
#ifdef AUTOTEMP
|
||||||
if(se>high)
|
void getHighESpeed()
|
||||||
{
|
{
|
||||||
high=se;
|
if(degTargetHotend0()+2<AUTOTEMP_MIN) //probably temperature set to zero.
|
||||||
}
|
return; //do nothing
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
float high=0;
|
||||||
}
|
char block_index = block_buffer_tail;
|
||||||
high_e_speed=high*axis_steps_per_unit[E_AXIS]/(1000000.0); //so it is independent of the esteps/mm. before
|
|
||||||
|
while(block_index != block_buffer_head) {
|
||||||
float g=AUTOTEMP_MIN+high_e_speed*AUTOTEMP_FACTOR;
|
float se=block_buffer[block_index].speed_e;
|
||||||
float t=constrain(AUTOTEMP_MIN,g,AUTOTEMP_MAX);
|
if(se>high)
|
||||||
setTargetHotend0(t);
|
{
|
||||||
SERIAL_ECHO_START;
|
high=se;
|
||||||
SERIAL_ECHOPAIR("highe",high_e_speed);
|
}
|
||||||
SERIAL_ECHOPAIR(" t",t);
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||||
SERIAL_ECHOLN("");
|
}
|
||||||
}
|
high_e_speed=high*axis_steps_per_unit[E_AXIS]/(1000000.0); //so it is independent of the esteps/mm. before
|
||||||
#endif
|
|
||||||
|
float g=AUTOTEMP_MIN+high_e_speed*AUTOTEMP_FACTOR;
|
||||||
void check_axes_activity() {
|
float t=constrain(AUTOTEMP_MIN,g,AUTOTEMP_MAX);
|
||||||
unsigned char x_active = 0;
|
setTargetHotend0(t);
|
||||||
unsigned char y_active = 0;
|
SERIAL_ECHO_START;
|
||||||
unsigned char z_active = 0;
|
SERIAL_ECHOPAIR("highe",high_e_speed);
|
||||||
unsigned char e_active = 0;
|
SERIAL_ECHOPAIR(" t",t);
|
||||||
block_t *block;
|
SERIAL_ECHOLN("");
|
||||||
|
}
|
||||||
if(block_buffer_tail != block_buffer_head) {
|
#endif
|
||||||
char block_index = block_buffer_tail;
|
|
||||||
while(block_index != block_buffer_head) {
|
void check_axes_activity() {
|
||||||
block = &block_buffer[block_index];
|
unsigned char x_active = 0;
|
||||||
if(block->steps_x != 0) x_active++;
|
unsigned char y_active = 0;
|
||||||
if(block->steps_y != 0) y_active++;
|
unsigned char z_active = 0;
|
||||||
if(block->steps_z != 0) z_active++;
|
unsigned char e_active = 0;
|
||||||
if(block->steps_e != 0) e_active++;
|
block_t *block;
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
||||||
}
|
if(block_buffer_tail != block_buffer_head) {
|
||||||
}
|
char block_index = block_buffer_tail;
|
||||||
if((DISABLE_X) && (x_active == 0)) disable_x();
|
while(block_index != block_buffer_head) {
|
||||||
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
block = &block_buffer[block_index];
|
||||||
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
if(block->steps_x != 0) x_active++;
|
||||||
if((DISABLE_E) && (e_active == 0)) disable_e();
|
if(block->steps_y != 0) y_active++;
|
||||||
}
|
if(block->steps_z != 0) z_active++;
|
||||||
|
if(block->steps_e != 0) e_active++;
|
||||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
}
|
||||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
}
|
||||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
||||||
{
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
||||||
// Calculate the buffer head after we push this byte
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
||||||
int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
|
if((DISABLE_E) && (e_active == 0)) disable_e();
|
||||||
|
}
|
||||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
|
||||||
// Rest here until there is room in the buffer.
|
|
||||||
while(block_buffer_tail == next_buffer_head) {
|
float junction_deviation = 0.1;
|
||||||
manage_heater();
|
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||||
manage_inactivity(1);
|
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||||
LCD_STATUS;
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||||
}
|
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
|
||||||
|
{
|
||||||
// The target position of the tool in absolute steps
|
// Calculate the buffer head after we push this byte
|
||||||
// Calculate target position in absolute steps
|
int next_buffer_head = next_block_index(block_buffer_head);
|
||||||
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
|
||||||
long target[4];
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||||
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
// Rest here until there is room in the buffer.
|
||||||
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
while(block_buffer_tail == next_buffer_head) {
|
||||||
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
manage_heater();
|
||||||
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
manage_inactivity(1);
|
||||||
|
LCD_STATUS;
|
||||||
// Prepare to set up new block
|
}
|
||||||
block_t *block = &block_buffer[block_buffer_head];
|
|
||||||
|
// The target position of the tool in absolute steps
|
||||||
// Mark block as not busy (Not executed by the stepper interrupt)
|
// Calculate target position in absolute steps
|
||||||
block->busy = false;
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
||||||
|
long target[4];
|
||||||
// Number of steps for each axis
|
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||||
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
|
||||||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
// Prepare to set up new block
|
||||||
|
block_t *block = &block_buffer[block_buffer_head];
|
||||||
// Bail if this is a zero-length block
|
|
||||||
if (block->step_event_count <=dropsegments) {
|
// Mark block as not busy (Not executed by the stepper interrupt)
|
||||||
return;
|
block->busy = false;
|
||||||
};
|
|
||||||
|
// Number of steps for each axis
|
||||||
//enable active axes
|
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||||
if(block->steps_x != 0) enable_x();
|
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||||
if(block->steps_y != 0) enable_y();
|
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||||
if(block->steps_z != 0) enable_z();
|
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
||||||
if(block->steps_e != 0) enable_e();
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
||||||
|
|
||||||
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
// Bail if this is a zero-length block
|
||||||
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
if (block->step_event_count <=dropsegments) { return; };
|
||||||
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
|
||||||
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
// Compute direction bits for this block
|
||||||
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
|
block->direction_bits = 0;
|
||||||
|
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
||||||
unsigned long microseconds;
|
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
||||||
|
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
|
||||||
if (block->steps_e == 0) {
|
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
|
||||||
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
||||||
}
|
//enable active axes
|
||||||
else {
|
if(block->steps_x != 0) enable_x();
|
||||||
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
if(block->steps_y != 0) enable_y();
|
||||||
}
|
if(block->steps_z != 0) enable_z();
|
||||||
|
if(block->steps_e != 0) enable_e();
|
||||||
microseconds = lround((block->millimeters/feed_rate)*1000000);
|
|
||||||
|
float delta_mm[4];
|
||||||
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||||||
// reduces/removes corner blobs as the machine won't come to a full stop.
|
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||||
int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||||
|
delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||||||
if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
|
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
|
||||||
if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
square(delta_mm[Z_AXIS]) + square(delta_mm[E_AXIS]));
|
||||||
microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);
|
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
||||||
}
|
|
||||||
}
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
||||||
else {
|
float inverse_second = feed_rate * inverse_millimeters;
|
||||||
if (microseconds<minsegmenttime) microseconds=minsegmenttime;
|
|
||||||
}
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
||||||
// END OF SLOW DOWN SECTION
|
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
||||||
|
|
||||||
|
// segment time im micro seconds
|
||||||
// Calculate speed in mm/minute for each axis
|
long segment_time = lround(1000000.0/inverse_second);
|
||||||
float multiplier = 60.0*1000000.0/microseconds;
|
|
||||||
block->speed_z = delta_z_mm * multiplier;
|
|
||||||
block->speed_x = delta_x_mm * multiplier;
|
if (block->steps_e == 0) {
|
||||||
block->speed_y = delta_y_mm * multiplier;
|
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
||||||
block->speed_e = delta_e_mm * multiplier;
|
}
|
||||||
|
else {
|
||||||
|
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
||||||
// Limit speed per axis
|
}
|
||||||
float speed_factor = 1; //factor <=1 do decrease speed
|
|
||||||
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
|
#ifdef SLOWDOWN
|
||||||
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
||||||
//if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above
|
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
||||||
}
|
|
||||||
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
|
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5)) feed_rate = feed_rate / ((BLOCK_BUFFER_SIZE * 0.5)/moves_queued);
|
||||||
float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
|
#endif
|
||||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
|
||||||
}
|
/*
|
||||||
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
|
if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
|
||||||
float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
|
if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
||||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
|
||||||
}
|
}
|
||||||
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
|
}
|
||||||
float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
|
else {
|
||||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
if (segment_time<minsegmenttime) segment_time=minsegmenttime;
|
||||||
}
|
}
|
||||||
multiplier = multiplier * speed_factor;
|
// END OF SLOW DOWN SECTION
|
||||||
block->speed_z = delta_z_mm * multiplier;
|
*/
|
||||||
block->speed_x = delta_x_mm * multiplier;
|
|
||||||
block->speed_y = delta_y_mm * multiplier;
|
|
||||||
block->speed_e = delta_e_mm * multiplier;
|
// Calculate speed in mm/sec for each axis
|
||||||
block->nominal_speed = block->millimeters * multiplier;
|
float current_speed[4];
|
||||||
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
|
for(int i=0; i < 4; i++) {
|
||||||
|
current_speed[i] = delta_mm[i] * inverse_second;
|
||||||
if(block->nominal_rate < 120)
|
}
|
||||||
block->nominal_rate = 120;
|
|
||||||
block->entry_speed = safe_speed(block);
|
// Limit speed per axis
|
||||||
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||||
// Compute the acceleration rate for the trapezoid generator.
|
for(int i=0; i < 4; i++) {
|
||||||
float travel_per_step = block->millimeters/block->step_event_count;
|
if(abs(current_speed[i]) > max_feedrate[i])
|
||||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
|
||||||
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
}
|
||||||
}
|
|
||||||
else {
|
// Max segement time in us.
|
||||||
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
#ifdef XY_FREQUENCY_LIMIT
|
||||||
float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||||
// Limit acceleration per axis
|
|
||||||
if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {
|
// Check and limit the xy direction change frequency
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
||||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
old_direction_bits = block->direction_bits;
|
||||||
}
|
|
||||||
if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
|
if((direction_change & (1<<X_AXIS)) == 0) {
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
x_segment_time[0] += segment_time;
|
||||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
}
|
||||||
}
|
else {
|
||||||
if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
|
x_segment_time[2] = x_segment_time[1];
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
x_segment_time[1] = x_segment_time[0];
|
||||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
x_segment_time[0] = segment_time;
|
||||||
}
|
}
|
||||||
if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
|
if((direction_change & (1<<Y_AXIS)) == 0) {
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
y_segment_time[0] += segment_time;
|
||||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
}
|
||||||
}
|
else {
|
||||||
}
|
y_segment_time[2] = y_segment_time[1];
|
||||||
block->acceleration = block->acceleration_st * travel_per_step;
|
y_segment_time[1] = y_segment_time[0];
|
||||||
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
|
y_segment_time[0] = segment_time;
|
||||||
|
}
|
||||||
#ifdef ADVANCE
|
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
||||||
// Calculate advance rate
|
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
||||||
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
||||||
block->advance_rate = 0;
|
if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
||||||
block->advance = 0;
|
#endif
|
||||||
}
|
|
||||||
else {
|
// Correct the speed
|
||||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
if( speed_factor < 1.0) {
|
||||||
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
// Serial.print("speed factor : "); Serial.println(speed_factor);
|
||||||
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
for(int i=0; i < 4; i++) {
|
||||||
block->advance = advance;
|
if(abs(current_speed[i]) > max_feedrate[i])
|
||||||
if(acc_dist == 0) {
|
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
|
||||||
block->advance_rate = 0;
|
/*
|
||||||
}
|
if(speed_factor < 0.1) {
|
||||||
else {
|
Serial.print("speed factor : "); Serial.println(speed_factor);
|
||||||
block->advance_rate = advance / (float)acc_dist;
|
Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
|
||||||
}
|
}
|
||||||
}
|
*/
|
||||||
#endif // ADVANCE
|
}
|
||||||
|
for(unsigned char i=0; i < 4; i++) {
|
||||||
// compute a preliminary conservative acceleration trapezoid
|
current_speed[i] *= speed_factor;
|
||||||
float safespeed = safe_speed(block);
|
}
|
||||||
calculate_trapezoid_for_block(block, safespeed, safespeed);
|
block->nominal_speed *= speed_factor;
|
||||||
|
block->nominal_rate *= speed_factor;
|
||||||
// Compute direction bits for this block
|
}
|
||||||
block->direction_bits = 0;
|
|
||||||
if (target[X_AXIS] < position[X_AXIS]) {
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||||
block->direction_bits |= (1<<X_AXIS);
|
float steps_per_mm = block->step_event_count/block->millimeters;
|
||||||
}
|
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
||||||
if (target[Y_AXIS] < position[Y_AXIS]) {
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
block->direction_bits |= (1<<Y_AXIS);
|
}
|
||||||
}
|
else {
|
||||||
if (target[Z_AXIS] < position[Z_AXIS]) {
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
block->direction_bits |= (1<<Z_AXIS);
|
// Limit acceleration per axis
|
||||||
}
|
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
||||||
if (target[E_AXIS] < position[E_AXIS]) {
|
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||||
block->direction_bits |= (1<<E_AXIS);
|
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
||||||
}
|
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||||
|
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
||||||
// Move buffer head
|
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||||
block_buffer_head = next_buffer_head;
|
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
||||||
|
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||||
// Update position
|
}
|
||||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
block->acceleration = block->acceleration_st / steps_per_mm;
|
||||||
|
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
|
||||||
planner_recalculate();
|
|
||||||
#ifdef AUTOTEMP
|
#if 0 // Use old jerk for now
|
||||||
getHighESpeed();
|
// Compute path unit vector
|
||||||
#endif
|
double unit_vec[3];
|
||||||
st_wake_up();
|
|
||||||
}
|
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
|
||||||
|
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
|
||||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
|
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
|
||||||
{
|
|
||||||
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
||||||
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
// Let a circle be tangent to both previous and current path line segments, where the junction
|
||||||
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
||||||
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
// colinear with the circle center. The circular segment joining the two paths represents the
|
||||||
}
|
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
||||||
|
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
||||||
|
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
|
||||||
|
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
||||||
|
// nonlinearities of both the junction angle and junction velocity.
|
||||||
|
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
||||||
|
|
||||||
|
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||||
|
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||||
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
||||||
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
||||||
|
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
||||||
|
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
||||||
|
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
||||||
|
|
||||||
|
// Skip and use default max junction speed for 0 degree acute junction.
|
||||||
|
if (cos_theta < 0.95) {
|
||||||
|
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
||||||
|
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
||||||
|
if (cos_theta > -0.95) {
|
||||||
|
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
||||||
|
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
||||||
|
vmax_junction = min(vmax_junction,
|
||||||
|
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
// Start with a safe speed
|
||||||
|
float vmax_junction = max_xy_jerk/2;
|
||||||
|
if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
|
||||||
|
vmax_junction = max_z_jerk/2;
|
||||||
|
vmax_junction = min(vmax_junction, block->nominal_speed);
|
||||||
|
|
||||||
|
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||||
|
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
|
||||||
|
if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
|
||||||
|
vmax_junction = block->nominal_speed;
|
||||||
|
}
|
||||||
|
if (jerk > max_xy_jerk) {
|
||||||
|
vmax_junction *= (max_xy_jerk/jerk);
|
||||||
|
}
|
||||||
|
if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
|
||||||
|
vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
block->max_entry_speed = vmax_junction;
|
||||||
|
|
||||||
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
||||||
|
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
|
||||||
|
block->entry_speed = min(vmax_junction, v_allowable);
|
||||||
|
|
||||||
|
// Initialize planner efficiency flags
|
||||||
|
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
||||||
|
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
||||||
|
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
||||||
|
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
||||||
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
||||||
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
||||||
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
||||||
|
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
|
||||||
|
else { block->nominal_length_flag = false; }
|
||||||
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||||
|
|
||||||
|
// Update previous path unit_vector and nominal speed
|
||||||
|
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
||||||
|
previous_nominal_speed = block->nominal_speed;
|
||||||
|
|
||||||
|
#ifdef ADVANCE
|
||||||
|
// Calculate advance rate
|
||||||
|
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
||||||
|
block->advance_rate = 0;
|
||||||
|
block->advance = 0;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||||
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
||||||
|
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
||||||
|
block->advance = advance;
|
||||||
|
if(acc_dist == 0) {
|
||||||
|
block->advance_rate = 0;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
block->advance_rate = advance / (float)acc_dist;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif // ADVANCE
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
|
||||||
|
MINIMUM_PLANNER_SPEED/block->nominal_speed);
|
||||||
|
|
||||||
|
// Move buffer head
|
||||||
|
block_buffer_head = next_buffer_head;
|
||||||
|
|
||||||
|
// Update position
|
||||||
|
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||||
|
|
||||||
|
planner_recalculate();
|
||||||
|
#ifdef AUTOTEMP
|
||||||
|
getHighESpeed();
|
||||||
|
#endif
|
||||||
|
st_wake_up();
|
||||||
|
}
|
||||||
|
|
||||||
|
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
|
||||||
|
{
|
||||||
|
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||||||
|
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||||
|
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||||
|
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||||
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||||
|
previous_speed[0] = 0.0;
|
||||||
|
previous_speed[1] = 0.0;
|
||||||
|
previous_speed[2] = 0.0;
|
||||||
|
previous_speed[3] = 0.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
@ -1,95 +1,98 @@
|
|||||||
/*
|
/*
|
||||||
planner.h - buffers movement commands and manages the acceleration profile plan
|
planner.h - buffers movement commands and manages the acceleration profile plan
|
||||||
Part of Grbl
|
Part of Grbl
|
||||||
|
|
||||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||||
|
|
||||||
Grbl is free software: you can redistribute it and/or modify
|
Grbl is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
Grbl is distributed in the hope that it will be useful,
|
Grbl is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// This module is to be considered a sub-module of stepper.c. Please don't include
|
// This module is to be considered a sub-module of stepper.c. Please don't include
|
||||||
// this file from any other module.
|
// this file from any other module.
|
||||||
|
|
||||||
#ifndef planner_h
|
#ifndef planner_h
|
||||||
#define planner_h
|
#define planner_h
|
||||||
|
|
||||||
#include "Configuration.h"
|
#include "Configuration.h"
|
||||||
|
|
||||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||||
// the source g-code and may never actually be reached if acceleration management is active.
|
// the source g-code and may never actually be reached if acceleration management is active.
|
||||||
typedef struct {
|
typedef struct {
|
||||||
// Fields used by the bresenham algorithm for tracing the line
|
// Fields used by the bresenham algorithm for tracing the line
|
||||||
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
||||||
long step_event_count; // The number of step events required to complete this block
|
long step_event_count; // The number of step events required to complete this block
|
||||||
volatile long accelerate_until; // The index of the step event on which to stop acceleration
|
long accelerate_until; // The index of the step event on which to stop acceleration
|
||||||
volatile long decelerate_after; // The index of the step event on which to start decelerating
|
long decelerate_after; // The index of the step event on which to start decelerating
|
||||||
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
|
long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
long advance_rate;
|
// long advance_rate;
|
||||||
volatile long initial_advance;
|
// volatile long initial_advance;
|
||||||
volatile long final_advance;
|
// volatile long final_advance;
|
||||||
float advance;
|
// float advance;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Fields used by the motion planner to manage acceleration
|
// Fields used by the motion planner to manage acceleration
|
||||||
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
|
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
|
||||||
float nominal_speed; // The nominal speed for this block in mm/min
|
float nominal_speed; // The nominal speed for this block in mm/min
|
||||||
float millimeters; // The total travel of this block in mm
|
float entry_speed; // Entry speed at previous-current junction in mm/min
|
||||||
float entry_speed;
|
float max_entry_speed; // Maximum allowable junction entry speed in mm/min
|
||||||
float acceleration; // acceleration mm/sec^2
|
float millimeters; // The total travel of this block in mm
|
||||||
|
float acceleration; // acceleration mm/sec^2
|
||||||
// Settings for the trapezoid generator
|
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
|
||||||
long nominal_rate; // The nominal step rate for this block in step_events/sec
|
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
|
||||||
volatile long initial_rate; // The jerk-adjusted step rate at start of block
|
|
||||||
volatile long final_rate; // The minimal rate at exit
|
// Settings for the trapezoid generator
|
||||||
long acceleration_st; // acceleration steps/sec^2
|
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
|
||||||
volatile char busy;
|
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
|
||||||
} block_t;
|
unsigned long final_rate; // The minimal rate at exit
|
||||||
|
unsigned long acceleration_st; // acceleration steps/sec^2
|
||||||
// Initialize the motion plan subsystem
|
volatile char busy;
|
||||||
void plan_init();
|
} block_t;
|
||||||
|
|
||||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
// Initialize the motion plan subsystem
|
||||||
// millimaters. Feed rate specifies the speed of the motion.
|
void plan_init();
|
||||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate);
|
|
||||||
|
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||||
// Set position. Used for G92 instructions.
|
// millimaters. Feed rate specifies the speed of the motion.
|
||||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate);
|
||||||
|
|
||||||
|
// Set position. Used for G92 instructions.
|
||||||
// Called when the current block is no longer needed. Discards the block and makes the memory
|
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
||||||
// availible for new blocks.
|
|
||||||
void plan_discard_current_block();
|
|
||||||
|
// Called when the current block is no longer needed. Discards the block and makes the memory
|
||||||
// Gets the current block. Returns NULL if buffer empty
|
// availible for new blocks.
|
||||||
block_t *plan_get_current_block();
|
void plan_discard_current_block();
|
||||||
|
|
||||||
void check_axes_activity();
|
// Gets the current block. Returns NULL if buffer empty
|
||||||
|
block_t *plan_get_current_block();
|
||||||
extern unsigned long minsegmenttime;
|
|
||||||
extern float max_feedrate[4]; // set the max speeds
|
void check_axes_activity();
|
||||||
extern float axis_steps_per_unit[4];
|
|
||||||
extern long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
|
extern unsigned long minsegmenttime;
|
||||||
extern float minimumfeedrate;
|
extern float max_feedrate[4]; // set the max speeds
|
||||||
extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
|
extern float axis_steps_per_unit[4];
|
||||||
extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
|
extern unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
|
||||||
extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
|
extern float minimumfeedrate;
|
||||||
extern float max_z_jerk;
|
extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
|
||||||
extern float mintravelfeedrate;
|
extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
|
||||||
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
|
||||||
#ifdef AUTOTEMP
|
extern float max_z_jerk;
|
||||||
extern float high_e_speed;
|
extern float mintravelfeedrate;
|
||||||
#endif
|
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||||
#endif
|
#ifdef AUTOTEMP
|
||||||
|
extern float high_e_speed;
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
@ -1,664 +1,669 @@
|
|||||||
/*
|
/*
|
||||||
stepper.c - stepper motor driver: executes motion plans using stepper motors
|
stepper.c - stepper motor driver: executes motion plans using stepper motors
|
||||||
Part of Grbl
|
Part of Grbl
|
||||||
|
|
||||||
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
Copyright (c) 2009-2011 Simen Svale Skogsrud
|
||||||
|
|
||||||
Grbl is free software: you can redistribute it and/or modify
|
Grbl is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
Grbl is distributed in the hope that it will be useful,
|
Grbl is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
||||||
and Philipp Tiefenbacher. */
|
and Philipp Tiefenbacher. */
|
||||||
|
|
||||||
#include "stepper.h"
|
#include "stepper.h"
|
||||||
#include "Configuration.h"
|
#include "Configuration.h"
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
#include "planner.h"
|
#include "planner.h"
|
||||||
#include "pins.h"
|
#include "pins.h"
|
||||||
#include "fastio.h"
|
#include "fastio.h"
|
||||||
#include "temperature.h"
|
#include "temperature.h"
|
||||||
#include "ultralcd.h"
|
#include "ultralcd.h"
|
||||||
|
|
||||||
#include "speed_lookuptable.h"
|
#include "speed_lookuptable.h"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================public variables ============================
|
//=============================public variables ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
block_t *current_block; // A pointer to the block currently being traced
|
block_t *current_block; // A pointer to the block currently being traced
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================private variables ============================
|
//=============================private variables ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//static makes it inpossible to be called from outside of this file by extern.!
|
//static makes it inpossible to be called from outside of this file by extern.!
|
||||||
|
|
||||||
// Variables used by The Stepper Driver Interrupt
|
// Variables used by The Stepper Driver Interrupt
|
||||||
static unsigned char out_bits; // The next stepping-bits to be output
|
static unsigned char out_bits; // The next stepping-bits to be output
|
||||||
static long counter_x, // Counter variables for the bresenham line tracer
|
static long counter_x, // Counter variables for the bresenham line tracer
|
||||||
counter_y,
|
counter_y,
|
||||||
counter_z,
|
counter_z,
|
||||||
counter_e;
|
counter_e;
|
||||||
static unsigned long step_events_completed; // The number of step events executed in the current block
|
static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
static long advance_rate, advance, final_advance = 0;
|
static long advance_rate, advance, final_advance = 0;
|
||||||
static short old_advance = 0;
|
static short old_advance = 0;
|
||||||
static short e_steps;
|
static short e_steps;
|
||||||
#endif
|
#endif
|
||||||
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||||||
static long acceleration_time, deceleration_time;
|
static long acceleration_time, deceleration_time;
|
||||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||||
static unsigned short acc_step_rate; // needed for deccelaration start point
|
static unsigned short acc_step_rate; // needed for deccelaration start point
|
||||||
static char step_loops;
|
static char step_loops;
|
||||||
|
|
||||||
volatile long endstops_trigsteps[3]={0,0,0};
|
volatile long endstops_trigsteps[3]={0,0,0};
|
||||||
volatile long endstops_stepsTotal,endstops_stepsDone;
|
volatile long endstops_stepsTotal,endstops_stepsDone;
|
||||||
static volatile bool endstops_hit=false;
|
static volatile bool endstops_hit=false;
|
||||||
|
|
||||||
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
|
// if DEBUG_STEPS is enabled, M114 can be used to compare two methods of determining the X,Y,Z position of the printer.
|
||||||
// for debugging purposes only, should be disabled by default
|
// for debugging purposes only, should be disabled by default
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
||||||
volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
volatile int count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================functions ============================
|
//=============================functions ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
|
|
||||||
|
|
||||||
// intRes = intIn1 * intIn2 >> 16
|
// intRes = intIn1 * intIn2 >> 16
|
||||||
// uses:
|
// uses:
|
||||||
// r26 to store 0
|
// r26 to store 0
|
||||||
// r27 to store the byte 1 of the 24 bit result
|
// r27 to store the byte 1 of the 24 bit result
|
||||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||||
asm volatile ( \
|
asm volatile ( \
|
||||||
"clr r26 \n\t" \
|
"clr r26 \n\t" \
|
||||||
"mul %A1, %B2 \n\t" \
|
"mul %A1, %B2 \n\t" \
|
||||||
"movw %A0, r0 \n\t" \
|
"movw %A0, r0 \n\t" \
|
||||||
"mul %A1, %A2 \n\t" \
|
"mul %A1, %A2 \n\t" \
|
||||||
"add %A0, r1 \n\t" \
|
"add %A0, r1 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"lsr r0 \n\t" \
|
"lsr r0 \n\t" \
|
||||||
"adc %A0, r26 \n\t" \
|
"adc %A0, r26 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"clr r1 \n\t" \
|
"clr r1 \n\t" \
|
||||||
: \
|
: \
|
||||||
"=&r" (intRes) \
|
"=&r" (intRes) \
|
||||||
: \
|
: \
|
||||||
"d" (charIn1), \
|
"d" (charIn1), \
|
||||||
"d" (intIn2) \
|
"d" (intIn2) \
|
||||||
: \
|
: \
|
||||||
"r26" \
|
"r26" \
|
||||||
)
|
)
|
||||||
|
|
||||||
// intRes = longIn1 * longIn2 >> 24
|
// intRes = longIn1 * longIn2 >> 24
|
||||||
// uses:
|
// uses:
|
||||||
// r26 to store 0
|
// r26 to store 0
|
||||||
// r27 to store the byte 1 of the 48bit result
|
// r27 to store the byte 1 of the 48bit result
|
||||||
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
|
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
|
||||||
asm volatile ( \
|
asm volatile ( \
|
||||||
"clr r26 \n\t" \
|
"clr r26 \n\t" \
|
||||||
"mul %A1, %B2 \n\t" \
|
"mul %A1, %B2 \n\t" \
|
||||||
"mov r27, r1 \n\t" \
|
"mov r27, r1 \n\t" \
|
||||||
"mul %B1, %C2 \n\t" \
|
"mul %B1, %C2 \n\t" \
|
||||||
"movw %A0, r0 \n\t" \
|
"movw %A0, r0 \n\t" \
|
||||||
"mul %C1, %C2 \n\t" \
|
"mul %C1, %C2 \n\t" \
|
||||||
"add %B0, r0 \n\t" \
|
"add %B0, r0 \n\t" \
|
||||||
"mul %C1, %B2 \n\t" \
|
"mul %C1, %B2 \n\t" \
|
||||||
"add %A0, r0 \n\t" \
|
"add %A0, r0 \n\t" \
|
||||||
"adc %B0, r1 \n\t" \
|
"adc %B0, r1 \n\t" \
|
||||||
"mul %A1, %C2 \n\t" \
|
"mul %A1, %C2 \n\t" \
|
||||||
"add r27, r0 \n\t" \
|
"add r27, r0 \n\t" \
|
||||||
"adc %A0, r1 \n\t" \
|
"adc %A0, r1 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"mul %B1, %B2 \n\t" \
|
"mul %B1, %B2 \n\t" \
|
||||||
"add r27, r0 \n\t" \
|
"add r27, r0 \n\t" \
|
||||||
"adc %A0, r1 \n\t" \
|
"adc %A0, r1 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"mul %C1, %A2 \n\t" \
|
"mul %C1, %A2 \n\t" \
|
||||||
"add r27, r0 \n\t" \
|
"add r27, r0 \n\t" \
|
||||||
"adc %A0, r1 \n\t" \
|
"adc %A0, r1 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"mul %B1, %A2 \n\t" \
|
"mul %B1, %A2 \n\t" \
|
||||||
"add r27, r1 \n\t" \
|
"add r27, r1 \n\t" \
|
||||||
"adc %A0, r26 \n\t" \
|
"adc %A0, r26 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"lsr r27 \n\t" \
|
"lsr r27 \n\t" \
|
||||||
"adc %A0, r26 \n\t" \
|
"adc %A0, r26 \n\t" \
|
||||||
"adc %B0, r26 \n\t" \
|
"adc %B0, r26 \n\t" \
|
||||||
"clr r1 \n\t" \
|
"clr r1 \n\t" \
|
||||||
: \
|
: \
|
||||||
"=&r" (intRes) \
|
"=&r" (intRes) \
|
||||||
: \
|
: \
|
||||||
"d" (longIn1), \
|
"d" (longIn1), \
|
||||||
"d" (longIn2) \
|
"d" (longIn2) \
|
||||||
: \
|
: \
|
||||||
"r26" , "r27" \
|
"r26" , "r27" \
|
||||||
)
|
)
|
||||||
|
|
||||||
// Some useful constants
|
// Some useful constants
|
||||||
|
|
||||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||||||
|
|
||||||
|
|
||||||
void endstops_triggered(const unsigned long &stepstaken)
|
void endstops_triggered(const unsigned long &stepstaken)
|
||||||
{
|
{
|
||||||
//this will only work if there is no bufferig
|
//this will only work if there is no bufferig
|
||||||
//however, if you perform a move at which the endstops should be triggered, and wait for it to complete, i.e. by blocking command, it should work
|
//however, if you perform a move at which the endstops should be triggered, and wait for it to complete, i.e. by blocking command, it should work
|
||||||
//yes, it uses floats, but: if endstops are triggered, thats hopefully not critical anymore anyways.
|
//yes, it uses floats, but: if endstops are triggered, thats hopefully not critical anymore anyways.
|
||||||
//endstops_triggerpos;
|
//endstops_triggerpos;
|
||||||
|
|
||||||
if(endstops_hit) //hitting a second time while the first hit is not reported
|
if(endstops_hit) //hitting a second time while the first hit is not reported
|
||||||
return;
|
return;
|
||||||
if(current_block == NULL)
|
if(current_block == NULL)
|
||||||
return;
|
return;
|
||||||
endstops_stepsTotal=current_block->step_event_count;
|
endstops_stepsTotal=current_block->step_event_count;
|
||||||
endstops_stepsDone=stepstaken;
|
endstops_stepsDone=stepstaken;
|
||||||
endstops_trigsteps[0]=current_block->steps_x;
|
endstops_trigsteps[0]=current_block->steps_x;
|
||||||
endstops_trigsteps[1]=current_block->steps_y;
|
endstops_trigsteps[1]=current_block->steps_y;
|
||||||
endstops_trigsteps[2]=current_block->steps_z;
|
endstops_trigsteps[2]=current_block->steps_z;
|
||||||
|
|
||||||
endstops_hit=true;
|
endstops_hit=true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void checkHitEndstops()
|
void checkHitEndstops()
|
||||||
{
|
{
|
||||||
if( !endstops_hit)
|
if( !endstops_hit)
|
||||||
return;
|
return;
|
||||||
float endstops_triggerpos[3]={0,0,0};
|
float endstops_triggerpos[3]={0,0,0};
|
||||||
float ratiodone=endstops_stepsDone/float(endstops_stepsTotal); //ratio of current_block thas was performed
|
float ratiodone=endstops_stepsDone/float(endstops_stepsTotal); //ratio of current_block thas was performed
|
||||||
|
|
||||||
endstops_triggerpos[0]=current_position[0]-(endstops_trigsteps[0]*ratiodone)/float(axis_steps_per_unit[0]);
|
endstops_triggerpos[0]=current_position[0]-(endstops_trigsteps[0]*ratiodone)/float(axis_steps_per_unit[0]);
|
||||||
endstops_triggerpos[1]=current_position[1]-(endstops_trigsteps[1]*ratiodone)/float(axis_steps_per_unit[1]);
|
endstops_triggerpos[1]=current_position[1]-(endstops_trigsteps[1]*ratiodone)/float(axis_steps_per_unit[1]);
|
||||||
endstops_triggerpos[2]=current_position[2]-(endstops_trigsteps[2]*ratiodone)/float(axis_steps_per_unit[2]);
|
endstops_triggerpos[2]=current_position[2]-(endstops_trigsteps[2]*ratiodone)/float(axis_steps_per_unit[2]);
|
||||||
SERIAL_ECHO_START;
|
SERIAL_ECHO_START;
|
||||||
SERIAL_ECHOPGM("endstops hit: ");
|
SERIAL_ECHOPGM("endstops hit: ");
|
||||||
SERIAL_ECHOPAIR(" X:",endstops_triggerpos[0]);
|
SERIAL_ECHOPAIR(" X:",endstops_triggerpos[0]);
|
||||||
SERIAL_ECHOPAIR(" Y:",endstops_triggerpos[1]);
|
SERIAL_ECHOPAIR(" Y:",endstops_triggerpos[1]);
|
||||||
SERIAL_ECHOPAIR(" Z:",endstops_triggerpos[2]);
|
SERIAL_ECHOPAIR(" Z:",endstops_triggerpos[2]);
|
||||||
SERIAL_ECHOLN("");
|
SERIAL_ECHOLN("");
|
||||||
endstops_hit=false;
|
endstops_hit=false;
|
||||||
}
|
}
|
||||||
|
|
||||||
void endstops_hit_on_purpose()
|
void endstops_hit_on_purpose()
|
||||||
{
|
{
|
||||||
endstops_hit=false;
|
endstops_hit=false;
|
||||||
}
|
}
|
||||||
|
|
||||||
// __________________________
|
// __________________________
|
||||||
// /| |\ _________________ ^
|
// /| |\ _________________ ^
|
||||||
// / | | \ /| |\ |
|
// / | | \ /| |\ |
|
||||||
// / | | \ / | | \ s
|
// / | | \ / | | \ s
|
||||||
// / | | | | | \ p
|
// / | | | | | \ p
|
||||||
// / | | | | | \ e
|
// / | | | | | \ e
|
||||||
// +-----+------------------------+---+--+---------------+----+ e
|
// +-----+------------------------+---+--+---------------+----+ e
|
||||||
// | BLOCK 1 | BLOCK 2 | d
|
// | BLOCK 1 | BLOCK 2 | d
|
||||||
//
|
//
|
||||||
// time ----->
|
// time ----->
|
||||||
//
|
//
|
||||||
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||||||
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||||||
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||||||
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
||||||
|
|
||||||
void st_wake_up() {
|
void st_wake_up() {
|
||||||
// TCNT1 = 0;
|
// TCNT1 = 0;
|
||||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
if(busy == false)
|
||||||
}
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||||
|
}
|
||||||
inline unsigned short calc_timer(unsigned short step_rate) {
|
|
||||||
unsigned short timer;
|
inline unsigned short calc_timer(unsigned short step_rate) {
|
||||||
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
unsigned short timer;
|
||||||
|
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
||||||
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
|
||||||
step_rate = step_rate >> 2;
|
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||||
step_loops = 4;
|
step_rate = (step_rate >> 2)&0x3fff;
|
||||||
}
|
step_loops = 4;
|
||||||
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
}
|
||||||
step_rate = step_rate >> 1;
|
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||||
step_loops = 2;
|
step_rate = (step_rate >> 1)&0x7fff;
|
||||||
}
|
step_loops = 2;
|
||||||
else {
|
}
|
||||||
step_loops = 1;
|
else {
|
||||||
}
|
step_loops = 1;
|
||||||
|
}
|
||||||
if(step_rate < 32) step_rate = 32;
|
|
||||||
step_rate -= 32; // Correct for minimal speed
|
if(step_rate < 32) step_rate = 32;
|
||||||
if(step_rate >= (8*256)){ // higher step rate
|
step_rate -= 32; // Correct for minimal speed
|
||||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
if(step_rate >= (8*256)){ // higher step rate
|
||||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
||||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||||
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
||||||
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||||||
}
|
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||||||
else { // lower step rates
|
}
|
||||||
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
else { // lower step rates
|
||||||
table_address += ((step_rate)>>1) & 0xfffc;
|
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||||||
timer = (unsigned short)pgm_read_word_near(table_address);
|
table_address += ((step_rate)>>1) & 0xfffc;
|
||||||
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||||
}
|
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||||||
if(timer < 100) timer = 100;
|
}
|
||||||
return timer;
|
if(timer < 100) { timer = 100; Serial.print("Steprate to high : "); Serial.println(step_rate); }//(20kHz this should never happen)
|
||||||
}
|
return timer;
|
||||||
|
}
|
||||||
// Initializes the trapezoid generator from the current block. Called whenever a new
|
|
||||||
// block begins.
|
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||||||
inline void trapezoid_generator_reset() {
|
// block begins.
|
||||||
#ifdef ADVANCE
|
inline void trapezoid_generator_reset() {
|
||||||
advance = current_block->initial_advance;
|
#ifdef ADVANCE
|
||||||
final_advance = current_block->final_advance;
|
advance = current_block->initial_advance;
|
||||||
#endif
|
final_advance = current_block->final_advance;
|
||||||
deceleration_time = 0;
|
#endif
|
||||||
// advance_rate = current_block->advance_rate;
|
deceleration_time = 0;
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
acc_step_rate = current_block->initial_rate;
|
acc_step_rate = current_block->initial_rate;
|
||||||
acceleration_time = calc_timer(acc_step_rate);
|
acceleration_time = calc_timer(acc_step_rate);
|
||||||
OCR1A = acceleration_time;
|
OCR1A = acceleration_time;
|
||||||
}
|
}
|
||||||
|
|
||||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||||
ISR(TIMER1_COMPA_vect)
|
ISR(TIMER1_COMPA_vect)
|
||||||
{
|
{
|
||||||
if(busy){
|
if(busy){
|
||||||
SERIAL_ERROR_START
|
SERIAL_ERROR_START
|
||||||
SERIAL_ERROR(*(unsigned short *)OCR1A);
|
SERIAL_ERROR(*(unsigned short *)OCR1A);
|
||||||
SERIAL_ERRORLNPGM(" ISR overtaking itself.");
|
SERIAL_ERRORLNPGM(" ISR overtaking itself.");
|
||||||
return;
|
return;
|
||||||
} // The busy-flag is used to avoid reentering this interrupt
|
} // The busy-flag is used to avoid reentering this interrupt
|
||||||
|
|
||||||
busy = true;
|
busy = true;
|
||||||
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
|
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
|
||||||
|
|
||||||
// If there is no current block, attempt to pop one from the buffer
|
// If there is no current block, attempt to pop one from the buffer
|
||||||
if (current_block == NULL) {
|
if (current_block == NULL) {
|
||||||
// Anything in the buffer?
|
// Anything in the buffer?
|
||||||
current_block = plan_get_current_block();
|
current_block = plan_get_current_block();
|
||||||
if (current_block != NULL) {
|
if (current_block != NULL) {
|
||||||
trapezoid_generator_reset();
|
trapezoid_generator_reset();
|
||||||
counter_x = -(current_block->step_event_count >> 1);
|
counter_x = -(current_block->step_event_count >> 1);
|
||||||
counter_y = counter_x;
|
counter_y = counter_x;
|
||||||
counter_z = counter_x;
|
counter_z = counter_x;
|
||||||
counter_e = counter_x;
|
counter_e = counter_x;
|
||||||
step_events_completed = 0;
|
step_events_completed = 0;
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
e_steps = 0;
|
e_steps = 0;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
// DISABLE_STEPPER_DRIVER_INTERRUPT();
|
// DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (current_block != NULL) {
|
if (current_block != NULL) {
|
||||||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||||
out_bits = current_block->direction_bits;
|
out_bits = current_block->direction_bits;
|
||||||
|
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
// Calculate E early.
|
// Calculate E early.
|
||||||
counter_e += current_block->steps_e;
|
counter_e += current_block->steps_e;
|
||||||
if (counter_e > 0) {
|
if (counter_e > 0) {
|
||||||
counter_e -= current_block->step_event_count;
|
counter_e -= current_block->step_event_count;
|
||||||
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||||||
CRITICAL_SECTION_START;
|
CRITICAL_SECTION_START;
|
||||||
e_steps--;
|
e_steps--;
|
||||||
CRITICAL_SECTION_END;
|
CRITICAL_SECTION_END;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
CRITICAL_SECTION_START;
|
CRITICAL_SECTION_START;
|
||||||
e_steps++;
|
e_steps++;
|
||||||
CRITICAL_SECTION_END;
|
CRITICAL_SECTION_END;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Do E steps + advance steps
|
// Do E steps + advance steps
|
||||||
CRITICAL_SECTION_START;
|
CRITICAL_SECTION_START;
|
||||||
e_steps += ((advance >> 16) - old_advance);
|
e_steps += ((advance >> 16) - old_advance);
|
||||||
CRITICAL_SECTION_END;
|
CRITICAL_SECTION_END;
|
||||||
old_advance = advance >> 16;
|
old_advance = advance >> 16;
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
|
|
||||||
// Set direction en check limit switches
|
// Set direction en check limit switches
|
||||||
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
||||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_direction[X_AXIS]=-1;
|
count_direction[X_AXIS]=-1;
|
||||||
#endif
|
#endif
|
||||||
#if X_MIN_PIN > -1
|
#if X_MIN_PIN > -1
|
||||||
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
|
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||||
endstops_triggered(step_events_completed);
|
// endstops_triggered(step_events_completed);
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed = current_block->step_event_count;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_direction[X_AXIS]=1;
|
count_direction[X_AXIS]=1;
|
||||||
#endif
|
#endif
|
||||||
#if X_MAX_PIN > -1
|
#if X_MAX_PIN > -1
|
||||||
if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
|
if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x >0)){
|
||||||
endstops_triggered(step_events_completed);
|
// endstops_triggered(step_events_completed);
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed = current_block->step_event_count;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||||
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_direction[Y_AXIS]=-1;
|
count_direction[Y_AXIS]=-1;
|
||||||
#endif
|
#endif
|
||||||
#if Y_MIN_PIN > -1
|
#if Y_MIN_PIN > -1
|
||||||
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
|
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||||
endstops_triggered(step_events_completed);
|
// endstops_triggered(step_events_completed);
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed = current_block->step_event_count;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_direction[Y_AXIS]=1;
|
count_direction[Y_AXIS]=1;
|
||||||
#endif
|
#endif
|
||||||
#if Y_MAX_PIN > -1
|
#if Y_MAX_PIN > -1
|
||||||
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
|
if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y >0)){
|
||||||
endstops_triggered(step_events_completed);
|
// endstops_triggered(step_events_completed);
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed = current_block->step_event_count;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_direction[Z_AXIS]=-1;
|
count_direction[Z_AXIS]=-1;
|
||||||
#endif
|
#endif
|
||||||
#if Z_MIN_PIN > -1
|
#if Z_MIN_PIN > -1
|
||||||
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
|
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||||||
endstops_triggered(step_events_completed);
|
endstops_triggered(step_events_completed);
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed = current_block->step_event_count;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_direction[Z_AXIS]=1;
|
count_direction[Z_AXIS]=1;
|
||||||
#endif
|
#endif
|
||||||
#if Z_MAX_PIN > -1
|
#if Z_MAX_PIN > -1
|
||||||
if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
|
if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z >0)){
|
||||||
endstops_triggered(step_events_completed);
|
// endstops_triggered(step_events_completed);
|
||||||
step_events_completed = current_block->step_event_count;
|
step_events_completed = current_block->step_event_count;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef ADVANCE
|
#ifndef ADVANCE
|
||||||
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
|
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
|
||||||
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||||||
else // +direction
|
else // +direction
|
||||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||||
#endif //!ADVANCE
|
#endif //!ADVANCE
|
||||||
|
|
||||||
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||||
counter_x += current_block->steps_x;
|
counter_x += current_block->steps_x;
|
||||||
if (counter_x > 0) {
|
if (counter_x > 0) {
|
||||||
WRITE(X_STEP_PIN, HIGH);
|
WRITE(X_STEP_PIN, HIGH);
|
||||||
counter_x -= current_block->step_event_count;
|
counter_x -= current_block->step_event_count;
|
||||||
WRITE(X_STEP_PIN, LOW);
|
WRITE(X_STEP_PIN, LOW);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_y += current_block->steps_y;
|
counter_y += current_block->steps_y;
|
||||||
if (counter_y > 0) {
|
if (counter_y > 0) {
|
||||||
WRITE(Y_STEP_PIN, HIGH);
|
WRITE(Y_STEP_PIN, HIGH);
|
||||||
counter_y -= current_block->step_event_count;
|
counter_y -= current_block->step_event_count;
|
||||||
WRITE(Y_STEP_PIN, LOW);
|
WRITE(Y_STEP_PIN, LOW);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_z += current_block->steps_z;
|
counter_z += current_block->steps_z;
|
||||||
if (counter_z > 0) {
|
if (counter_z > 0) {
|
||||||
WRITE(Z_STEP_PIN, HIGH);
|
WRITE(Z_STEP_PIN, HIGH);
|
||||||
counter_z -= current_block->step_event_count;
|
counter_z -= current_block->step_event_count;
|
||||||
WRITE(Z_STEP_PIN, LOW);
|
WRITE(Z_STEP_PIN, LOW);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
count_position[Z_AXIS]+=count_direction[Z_AXIS];
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef ADVANCE
|
#ifndef ADVANCE
|
||||||
counter_e += current_block->steps_e;
|
counter_e += current_block->steps_e;
|
||||||
if (counter_e > 0) {
|
if (counter_e > 0) {
|
||||||
WRITE(E_STEP_PIN, HIGH);
|
WRITE(E_STEP_PIN, HIGH);
|
||||||
counter_e -= current_block->step_event_count;
|
counter_e -= current_block->step_event_count;
|
||||||
WRITE(E_STEP_PIN, LOW);
|
WRITE(E_STEP_PIN, LOW);
|
||||||
}
|
}
|
||||||
#endif //!ADVANCE
|
#endif //!ADVANCE
|
||||||
step_events_completed += 1;
|
step_events_completed += 1;
|
||||||
if(step_events_completed >= current_block->step_event_count) break;
|
if(step_events_completed >= current_block->step_event_count) break;
|
||||||
}
|
}
|
||||||
// Calculare new timer value
|
// Calculare new timer value
|
||||||
unsigned short timer;
|
unsigned short timer;
|
||||||
unsigned short step_rate;
|
unsigned short step_rate;
|
||||||
if (step_events_completed <= current_block->accelerate_until) {
|
if (step_events_completed <= current_block->accelerate_until) {
|
||||||
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||||
acc_step_rate += current_block->initial_rate;
|
acc_step_rate += current_block->initial_rate;
|
||||||
|
|
||||||
// upper limit
|
// upper limit
|
||||||
if(acc_step_rate > current_block->nominal_rate)
|
if(acc_step_rate > current_block->nominal_rate)
|
||||||
acc_step_rate = current_block->nominal_rate;
|
acc_step_rate = current_block->nominal_rate;
|
||||||
|
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
timer = calc_timer(acc_step_rate);
|
timer = calc_timer(acc_step_rate);
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
advance += advance_rate;
|
advance += advance_rate;
|
||||||
#endif
|
#endif
|
||||||
acceleration_time += timer;
|
acceleration_time += timer;
|
||||||
OCR1A = timer;
|
OCR1A = timer;
|
||||||
}
|
}
|
||||||
else if (step_events_completed > current_block->decelerate_after) {
|
else if (step_events_completed > current_block->decelerate_after) {
|
||||||
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||||
|
|
||||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||||
step_rate = current_block->final_rate;
|
step_rate = current_block->final_rate;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
||||||
}
|
}
|
||||||
|
|
||||||
// lower limit
|
// lower limit
|
||||||
if(step_rate < current_block->final_rate)
|
if(step_rate < current_block->final_rate)
|
||||||
step_rate = current_block->final_rate;
|
step_rate = current_block->final_rate;
|
||||||
|
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
timer = calc_timer(step_rate);
|
timer = calc_timer(step_rate);
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
advance -= advance_rate;
|
advance -= advance_rate;
|
||||||
if(advance < final_advance)
|
if(advance < final_advance)
|
||||||
advance = final_advance;
|
advance = final_advance;
|
||||||
#endif //ADVANCE
|
#endif //ADVANCE
|
||||||
deceleration_time += timer;
|
deceleration_time += timer;
|
||||||
OCR1A = timer;
|
OCR1A = timer;
|
||||||
}
|
}
|
||||||
// If current block is finished, reset pointer
|
else {
|
||||||
if (step_events_completed >= current_block->step_event_count) {
|
timer = calc_timer(current_block->nominal_rate);
|
||||||
current_block = NULL;
|
OCR1A = timer;
|
||||||
plan_discard_current_block();
|
}
|
||||||
}
|
|
||||||
}
|
// If current block is finished, reset pointer
|
||||||
cli(); // disable interrupts
|
if (step_events_completed >= current_block->step_event_count) {
|
||||||
busy=false;
|
current_block = NULL;
|
||||||
}
|
plan_discard_current_block();
|
||||||
|
}
|
||||||
#ifdef ADVANCE
|
}
|
||||||
unsigned char old_OCR0A;
|
cli(); // disable interrupts
|
||||||
// Timer interrupt for E. e_steps is set in the main routine;
|
busy=false;
|
||||||
// Timer 0 is shared with millies
|
}
|
||||||
ISR(TIMER0_COMPA_vect)
|
|
||||||
{
|
#ifdef ADVANCE
|
||||||
// Critical section needed because Timer 1 interrupt has higher priority.
|
unsigned char old_OCR0A;
|
||||||
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
|
// Timer interrupt for E. e_steps is set in the main routine;
|
||||||
WRITE(E_STEP_PIN, LOW);
|
// Timer 0 is shared with millies
|
||||||
// Set E direction (Depends on E direction + advance)
|
ISR(TIMER0_COMPA_vect)
|
||||||
if (e_steps < 0) {
|
{
|
||||||
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
// Critical section needed because Timer 1 interrupt has higher priority.
|
||||||
e_steps++;
|
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
|
||||||
WRITE(E_STEP_PIN, HIGH);
|
WRITE(E_STEP_PIN, LOW);
|
||||||
}
|
// Set E direction (Depends on E direction + advance)
|
||||||
if (e_steps > 0) {
|
if (e_steps < 0) {
|
||||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||||||
e_steps--;
|
e_steps++;
|
||||||
WRITE(E_STEP_PIN, HIGH);
|
WRITE(E_STEP_PIN, HIGH);
|
||||||
}
|
}
|
||||||
old_OCR0A += 25; // 10kHz interrupt
|
if (e_steps > 0) {
|
||||||
OCR0A = old_OCR0A;
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||||
}
|
e_steps--;
|
||||||
#endif // ADVANCE
|
WRITE(E_STEP_PIN, HIGH);
|
||||||
|
}
|
||||||
void st_init()
|
old_OCR0A += 25; // 10kHz interrupt
|
||||||
{
|
OCR0A = old_OCR0A;
|
||||||
//Initialize Dir Pins
|
}
|
||||||
#if X_DIR_PIN > -1
|
#endif // ADVANCE
|
||||||
SET_OUTPUT(X_DIR_PIN);
|
|
||||||
#endif
|
void st_init()
|
||||||
#if Y_DIR_PIN > -1
|
{
|
||||||
SET_OUTPUT(Y_DIR_PIN);
|
//Initialize Dir Pins
|
||||||
#endif
|
#if X_DIR_PIN > -1
|
||||||
#if Z_DIR_PIN > -1
|
SET_OUTPUT(X_DIR_PIN);
|
||||||
SET_OUTPUT(Z_DIR_PIN);
|
#endif
|
||||||
#endif
|
#if Y_DIR_PIN > -1
|
||||||
#if E_DIR_PIN > -1
|
SET_OUTPUT(Y_DIR_PIN);
|
||||||
SET_OUTPUT(E_DIR_PIN);
|
#endif
|
||||||
#endif
|
#if Z_DIR_PIN > -1
|
||||||
|
SET_OUTPUT(Z_DIR_PIN);
|
||||||
//Initialize Enable Pins - steppers default to disabled.
|
#endif
|
||||||
|
#if E_DIR_PIN > -1
|
||||||
#if (X_ENABLE_PIN > -1)
|
SET_OUTPUT(E_DIR_PIN);
|
||||||
SET_OUTPUT(X_ENABLE_PIN);
|
#endif
|
||||||
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
|
||||||
#endif
|
//Initialize Enable Pins - steppers default to disabled.
|
||||||
#if (Y_ENABLE_PIN > -1)
|
|
||||||
SET_OUTPUT(Y_ENABLE_PIN);
|
#if (X_ENABLE_PIN > -1)
|
||||||
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
SET_OUTPUT(X_ENABLE_PIN);
|
||||||
#endif
|
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
||||||
#if (Z_ENABLE_PIN > -1)
|
#endif
|
||||||
SET_OUTPUT(Z_ENABLE_PIN);
|
#if (Y_ENABLE_PIN > -1)
|
||||||
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
SET_OUTPUT(Y_ENABLE_PIN);
|
||||||
#endif
|
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
||||||
#if (E_ENABLE_PIN > -1)
|
#endif
|
||||||
SET_OUTPUT(E_ENABLE_PIN);
|
#if (Z_ENABLE_PIN > -1)
|
||||||
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
|
SET_OUTPUT(Z_ENABLE_PIN);
|
||||||
#endif
|
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
||||||
|
#endif
|
||||||
//endstops and pullups
|
#if (E_ENABLE_PIN > -1)
|
||||||
#ifdef ENDSTOPPULLUPS
|
SET_OUTPUT(E_ENABLE_PIN);
|
||||||
#if X_MIN_PIN > -1
|
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
|
||||||
SET_INPUT(X_MIN_PIN);
|
#endif
|
||||||
WRITE(X_MIN_PIN,HIGH);
|
|
||||||
#endif
|
//endstops and pullups
|
||||||
#if X_MAX_PIN > -1
|
#ifdef ENDSTOPPULLUPS
|
||||||
SET_INPUT(X_MAX_PIN);
|
#if X_MIN_PIN > -1
|
||||||
WRITE(X_MAX_PIN,HIGH);
|
SET_INPUT(X_MIN_PIN);
|
||||||
#endif
|
WRITE(X_MIN_PIN,HIGH);
|
||||||
#if Y_MIN_PIN > -1
|
#endif
|
||||||
SET_INPUT(Y_MIN_PIN);
|
#if X_MAX_PIN > -1
|
||||||
WRITE(Y_MIN_PIN,HIGH);
|
SET_INPUT(X_MAX_PIN);
|
||||||
#endif
|
WRITE(X_MAX_PIN,HIGH);
|
||||||
#if Y_MAX_PIN > -1
|
#endif
|
||||||
SET_INPUT(Y_MAX_PIN);
|
#if Y_MIN_PIN > -1
|
||||||
WRITE(Y_MAX_PIN,HIGH);
|
SET_INPUT(Y_MIN_PIN);
|
||||||
#endif
|
WRITE(Y_MIN_PIN,HIGH);
|
||||||
#if Z_MIN_PIN > -1
|
#endif
|
||||||
SET_INPUT(Z_MIN_PIN);
|
#if Y_MAX_PIN > -1
|
||||||
WRITE(Z_MIN_PIN,HIGH);
|
SET_INPUT(Y_MAX_PIN);
|
||||||
#endif
|
WRITE(Y_MAX_PIN,HIGH);
|
||||||
#if Z_MAX_PIN > -1
|
#endif
|
||||||
SET_INPUT(Z_MAX_PIN);
|
#if Z_MIN_PIN > -1
|
||||||
WRITE(Z_MAX_PIN,HIGH);
|
SET_INPUT(Z_MIN_PIN);
|
||||||
#endif
|
WRITE(Z_MIN_PIN,HIGH);
|
||||||
#else //ENDSTOPPULLUPS
|
#endif
|
||||||
#if X_MIN_PIN > -1
|
#if Z_MAX_PIN > -1
|
||||||
SET_INPUT(X_MIN_PIN);
|
SET_INPUT(Z_MAX_PIN);
|
||||||
#endif
|
WRITE(Z_MAX_PIN,HIGH);
|
||||||
#if X_MAX_PIN > -1
|
#endif
|
||||||
SET_INPUT(X_MAX_PIN);
|
#else //ENDSTOPPULLUPS
|
||||||
#endif
|
#if X_MIN_PIN > -1
|
||||||
#if Y_MIN_PIN > -1
|
SET_INPUT(X_MIN_PIN);
|
||||||
SET_INPUT(Y_MIN_PIN);
|
#endif
|
||||||
#endif
|
#if X_MAX_PIN > -1
|
||||||
#if Y_MAX_PIN > -1
|
SET_INPUT(X_MAX_PIN);
|
||||||
SET_INPUT(Y_MAX_PIN);
|
#endif
|
||||||
#endif
|
#if Y_MIN_PIN > -1
|
||||||
#if Z_MIN_PIN > -1
|
SET_INPUT(Y_MIN_PIN);
|
||||||
SET_INPUT(Z_MIN_PIN);
|
#endif
|
||||||
#endif
|
#if Y_MAX_PIN > -1
|
||||||
#if Z_MAX_PIN > -1
|
SET_INPUT(Y_MAX_PIN);
|
||||||
SET_INPUT(Z_MAX_PIN);
|
#endif
|
||||||
#endif
|
#if Z_MIN_PIN > -1
|
||||||
#endif //ENDSTOPPULLUPS
|
SET_INPUT(Z_MIN_PIN);
|
||||||
|
#endif
|
||||||
|
#if Z_MAX_PIN > -1
|
||||||
//Initialize Step Pins
|
SET_INPUT(Z_MAX_PIN);
|
||||||
#if (X_STEP_PIN > -1)
|
#endif
|
||||||
SET_OUTPUT(X_STEP_PIN);
|
#endif //ENDSTOPPULLUPS
|
||||||
#endif
|
|
||||||
#if (Y_STEP_PIN > -1)
|
|
||||||
SET_OUTPUT(Y_STEP_PIN);
|
//Initialize Step Pins
|
||||||
#endif
|
#if (X_STEP_PIN > -1)
|
||||||
#if (Z_STEP_PIN > -1)
|
SET_OUTPUT(X_STEP_PIN);
|
||||||
SET_OUTPUT(Z_STEP_PIN);
|
#endif
|
||||||
#endif
|
#if (Y_STEP_PIN > -1)
|
||||||
#if (E_STEP_PIN > -1)
|
SET_OUTPUT(Y_STEP_PIN);
|
||||||
SET_OUTPUT(E_STEP_PIN);
|
#endif
|
||||||
#endif
|
#if (Z_STEP_PIN > -1)
|
||||||
|
SET_OUTPUT(Z_STEP_PIN);
|
||||||
// waveform generation = 0100 = CTC
|
#endif
|
||||||
TCCR1B &= ~(1<<WGM13);
|
#if (E_STEP_PIN > -1)
|
||||||
TCCR1B |= (1<<WGM12);
|
SET_OUTPUT(E_STEP_PIN);
|
||||||
TCCR1A &= ~(1<<WGM11);
|
#endif
|
||||||
TCCR1A &= ~(1<<WGM10);
|
|
||||||
|
// waveform generation = 0100 = CTC
|
||||||
// output mode = 00 (disconnected)
|
TCCR1B &= ~(1<<WGM13);
|
||||||
TCCR1A &= ~(3<<COM1A0);
|
TCCR1B |= (1<<WGM12);
|
||||||
TCCR1A &= ~(3<<COM1B0);
|
TCCR1A &= ~(1<<WGM11);
|
||||||
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
|
TCCR1A &= ~(1<<WGM10);
|
||||||
|
|
||||||
OCR1A = 0x4000;
|
// output mode = 00 (disconnected)
|
||||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
TCCR1A &= ~(3<<COM1A0);
|
||||||
|
TCCR1A &= ~(3<<COM1B0);
|
||||||
#ifdef ADVANCE
|
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
|
||||||
e_steps = 0;
|
|
||||||
TIMSK0 |= (1<<OCIE0A);
|
OCR1A = 0x4000;
|
||||||
#endif //ADVANCE
|
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||||
sei();
|
|
||||||
}
|
#ifdef ADVANCE
|
||||||
|
e_steps = 0;
|
||||||
// Block until all buffered steps are executed
|
TIMSK0 |= (1<<OCIE0A);
|
||||||
void st_synchronize()
|
#endif //ADVANCE
|
||||||
{
|
sei();
|
||||||
while(plan_get_current_block()) {
|
}
|
||||||
manage_heater();
|
|
||||||
manage_inactivity(1);
|
// Block until all buffered steps are executed
|
||||||
LCD_STATUS;
|
void st_synchronize()
|
||||||
}
|
{
|
||||||
}
|
while(plan_get_current_block()) {
|
||||||
|
manage_heater();
|
||||||
|
manage_inactivity(1);
|
||||||
|
LCD_STATUS;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
@ -1,577 +1,580 @@
|
|||||||
/*
|
/*
|
||||||
temperature.c - temperature control
|
temperature.c - temperature control
|
||||||
Part of Marlin
|
Part of Marlin
|
||||||
|
|
||||||
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
This program is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
This program is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/*
|
||||||
This firmware is a mashup between Sprinter and grbl.
|
This firmware is a mashup between Sprinter and grbl.
|
||||||
(https://github.com/kliment/Sprinter)
|
(https://github.com/kliment/Sprinter)
|
||||||
(https://github.com/simen/grbl/tree)
|
(https://github.com/simen/grbl/tree)
|
||||||
|
|
||||||
It has preliminary support for Matthew Roberts advance algorithm
|
It has preliminary support for Matthew Roberts advance algorithm
|
||||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||||
|
|
||||||
This firmware is optimized for gen6 electronics.
|
This firmware is optimized for gen6 electronics.
|
||||||
*/
|
*/
|
||||||
|
#include <avr/pgmspace.h>
|
||||||
#include "fastio.h"
|
|
||||||
#include "Configuration.h"
|
#include "fastio.h"
|
||||||
#include "pins.h"
|
#include "Configuration.h"
|
||||||
#include "Marlin.h"
|
#include "pins.h"
|
||||||
#include "ultralcd.h"
|
#include "Marlin.h"
|
||||||
#include "temperature.h"
|
#include "ultralcd.h"
|
||||||
#include "watchdog.h"
|
#include "temperature.h"
|
||||||
|
#include "watchdog.h"
|
||||||
//===========================================================================
|
|
||||||
//=============================public variables============================
|
//===========================================================================
|
||||||
//===========================================================================
|
//=============================public variables============================
|
||||||
int target_raw[3] = {0, 0, 0};
|
//===========================================================================
|
||||||
int current_raw[3] = {0, 0, 0};
|
int target_raw[3] = {0, 0, 0};
|
||||||
|
int current_raw[3] = {0, 0, 0};
|
||||||
#ifdef PIDTEMP
|
|
||||||
|
#ifdef PIDTEMP
|
||||||
// probably used external
|
|
||||||
float HeaterPower;
|
// probably used external
|
||||||
float pid_setpoint = 0.0;
|
float HeaterPower;
|
||||||
|
float pid_setpoint = 0.0;
|
||||||
|
|
||||||
float Kp=DEFAULT_Kp;
|
|
||||||
float Ki=DEFAULT_Ki;
|
float Kp=DEFAULT_Kp;
|
||||||
float Kd=DEFAULT_Kd;
|
float Ki=DEFAULT_Ki;
|
||||||
float Kc=DEFAULT_Kc;
|
float Kd=DEFAULT_Kd;
|
||||||
#endif //PIDTEMP
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||||||
|
float Kc=DEFAULT_Kc;
|
||||||
|
#endif
|
||||||
//===========================================================================
|
#endif //PIDTEMP
|
||||||
//=============================private variables============================
|
|
||||||
//===========================================================================
|
|
||||||
static bool temp_meas_ready = false;
|
//===========================================================================
|
||||||
|
//=============================private variables============================
|
||||||
static unsigned long previous_millis_heater, previous_millis_bed_heater;
|
//===========================================================================
|
||||||
|
static bool temp_meas_ready = false;
|
||||||
#ifdef PIDTEMP
|
|
||||||
//static cannot be external:
|
static unsigned long previous_millis_heater, previous_millis_bed_heater;
|
||||||
static float temp_iState = 0;
|
|
||||||
static float temp_dState = 0;
|
#ifdef PIDTEMP
|
||||||
static float pTerm;
|
//static cannot be external:
|
||||||
static float iTerm;
|
static float temp_iState = 0;
|
||||||
static float dTerm;
|
static float temp_dState = 0;
|
||||||
//int output;
|
static float pTerm;
|
||||||
static float pid_error;
|
static float iTerm;
|
||||||
static float temp_iState_min;
|
static float dTerm;
|
||||||
static float temp_iState_max;
|
//int output;
|
||||||
static float pid_input;
|
static float pid_error;
|
||||||
static float pid_output;
|
static float temp_iState_min;
|
||||||
static bool pid_reset;
|
static float temp_iState_max;
|
||||||
|
static float pid_input;
|
||||||
#endif //PIDTEMP
|
static float pid_output;
|
||||||
|
static bool pid_reset;
|
||||||
#ifdef WATCHPERIOD
|
|
||||||
static int watch_raw[3] = {-1000,-1000,-1000};
|
#endif //PIDTEMP
|
||||||
static unsigned long watchmillis = 0;
|
|
||||||
#endif //WATCHPERIOD
|
#ifdef WATCHPERIOD
|
||||||
|
static int watch_raw[3] = {-1000,-1000,-1000};
|
||||||
#ifdef HEATER_0_MINTEMP
|
static unsigned long watchmillis = 0;
|
||||||
static int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
|
#endif //WATCHPERIOD
|
||||||
#endif //MINTEMP
|
|
||||||
#ifdef HEATER_0_MAXTEMP
|
#ifdef HEATER_0_MINTEMP
|
||||||
static int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
|
static int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
|
||||||
#endif //MAXTEMP
|
#endif //MINTEMP
|
||||||
|
#ifdef HEATER_0_MAXTEMP
|
||||||
#ifdef HEATER_1_MINTEMP
|
static int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
|
||||||
static int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
|
#endif //MAXTEMP
|
||||||
#endif //MINTEMP
|
|
||||||
#ifdef HEATER_1_MAXTEMP
|
#ifdef HEATER_1_MINTEMP
|
||||||
static int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
|
static int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
|
||||||
#endif //MAXTEMP
|
#endif //MINTEMP
|
||||||
|
#ifdef HEATER_1_MAXTEMP
|
||||||
#ifdef BED_MINTEMP
|
static int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
|
||||||
static int bed_minttemp = temp2analog(BED_MINTEMP);
|
#endif //MAXTEMP
|
||||||
#endif //BED_MINTEMP
|
|
||||||
#ifdef BED_MAXTEMP
|
#ifdef BED_MINTEMP
|
||||||
static int bed_maxttemp = temp2analog(BED_MAXTEMP);
|
static int bed_minttemp = temp2analog(BED_MINTEMP);
|
||||||
#endif //BED_MAXTEMP
|
#endif //BED_MINTEMP
|
||||||
|
#ifdef BED_MAXTEMP
|
||||||
//===========================================================================
|
static int bed_maxttemp = temp2analog(BED_MAXTEMP);
|
||||||
//=============================functions ============================
|
#endif //BED_MAXTEMP
|
||||||
//===========================================================================
|
|
||||||
|
//===========================================================================
|
||||||
void updatePID()
|
//=============================functions ============================
|
||||||
{
|
//===========================================================================
|
||||||
#ifdef PIDTEMP
|
|
||||||
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
void updatePID()
|
||||||
#endif
|
{
|
||||||
}
|
#ifdef PIDTEMP
|
||||||
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||||||
void manage_heater()
|
#endif
|
||||||
{
|
}
|
||||||
#ifdef USE_WATCHDOG
|
|
||||||
wd_reset();
|
void manage_heater()
|
||||||
#endif
|
{
|
||||||
|
#ifdef USE_WATCHDOG
|
||||||
float pid_input;
|
wd_reset();
|
||||||
float pid_output;
|
#endif
|
||||||
if(temp_meas_ready != true) //better readability
|
|
||||||
return;
|
float pid_input;
|
||||||
|
float pid_output;
|
||||||
CRITICAL_SECTION_START;
|
if(temp_meas_ready != true) //better readability
|
||||||
temp_meas_ready = false;
|
return;
|
||||||
CRITICAL_SECTION_END;
|
|
||||||
|
CRITICAL_SECTION_START;
|
||||||
#ifdef PIDTEMP
|
temp_meas_ready = false;
|
||||||
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
CRITICAL_SECTION_END;
|
||||||
|
|
||||||
#ifndef PID_OPENLOOP
|
#ifdef PIDTEMP
|
||||||
pid_error = pid_setpoint - pid_input;
|
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
||||||
if(pid_error > 10){
|
|
||||||
pid_output = PID_MAX;
|
#ifndef PID_OPENLOOP
|
||||||
pid_reset = true;
|
pid_error = pid_setpoint - pid_input;
|
||||||
}
|
if(pid_error > 10){
|
||||||
else if(pid_error < -10) {
|
pid_output = PID_MAX;
|
||||||
pid_output = 0;
|
pid_reset = true;
|
||||||
pid_reset = true;
|
}
|
||||||
}
|
else if(pid_error < -10) {
|
||||||
else {
|
pid_output = 0;
|
||||||
if(pid_reset == true) {
|
pid_reset = true;
|
||||||
temp_iState = 0.0;
|
}
|
||||||
pid_reset = false;
|
else {
|
||||||
}
|
if(pid_reset == true) {
|
||||||
pTerm = Kp * pid_error;
|
temp_iState = 0.0;
|
||||||
temp_iState += pid_error;
|
pid_reset = false;
|
||||||
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
}
|
||||||
iTerm = Ki * temp_iState;
|
pTerm = Kp * pid_error;
|
||||||
//K1 defined in Configuration.h in the PID settings
|
temp_iState += pid_error;
|
||||||
#define K2 (1.0-K1)
|
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
||||||
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
iTerm = Ki * temp_iState;
|
||||||
temp_dState = pid_input;
|
//K1 defined in Configuration.h in the PID settings
|
||||||
#ifdef PID_ADD_EXTRUSION_RATE
|
#define K2 (1.0-K1)
|
||||||
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
||||||
#endif
|
temp_dState = pid_input;
|
||||||
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
// #ifdef PID_ADD_EXTRUSION_RATE
|
||||||
|
// pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
||||||
}
|
// #endif
|
||||||
#endif //PID_OPENLOOP
|
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
||||||
#ifdef PID_DEBUG
|
|
||||||
//SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
|
}
|
||||||
#endif //PID_DEBUG
|
#endif //PID_OPENLOOP
|
||||||
HeaterPower=pid_output;
|
#ifdef PID_DEBUG
|
||||||
analogWrite(HEATER_0_PIN, pid_output);
|
//SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
|
||||||
#endif //PIDTEMP
|
#endif //PID_DEBUG
|
||||||
|
HeaterPower=pid_output;
|
||||||
#ifndef PIDTEMP
|
analogWrite(HEATER_0_PIN, pid_output);
|
||||||
if(current_raw[0] >= target_raw[0])
|
#endif //PIDTEMP
|
||||||
{
|
|
||||||
WRITE(HEATER_0_PIN,LOW);
|
#ifndef PIDTEMP
|
||||||
}
|
if(current_raw[0] >= target_raw[0])
|
||||||
else
|
{
|
||||||
{
|
WRITE(HEATER_0_PIN,LOW);
|
||||||
WRITE(HEATER_0_PIN,HIGH);
|
}
|
||||||
}
|
else
|
||||||
#endif
|
{
|
||||||
|
WRITE(HEATER_0_PIN,HIGH);
|
||||||
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
}
|
||||||
return;
|
#endif
|
||||||
previous_millis_bed_heater = millis();
|
|
||||||
|
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
||||||
#if TEMP_1_PIN > -1
|
return;
|
||||||
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
|
previous_millis_bed_heater = millis();
|
||||||
{
|
|
||||||
WRITE(HEATER_1_PIN,LOW);
|
#if TEMP_1_PIN > -1
|
||||||
}
|
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
|
||||||
else
|
{
|
||||||
{
|
WRITE(HEATER_1_PIN,LOW);
|
||||||
WRITE(HEATER_1_PIN,HIGH);
|
}
|
||||||
}
|
else
|
||||||
#endif
|
{
|
||||||
}
|
WRITE(HEATER_1_PIN,HIGH);
|
||||||
|
}
|
||||||
// Takes hot end temperature value as input and returns corresponding raw value.
|
#endif
|
||||||
// For a thermistor, it uses the RepRap thermistor temp table.
|
}
|
||||||
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
|
||||||
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
||||||
int temp2analog(int celsius) {
|
// Takes hot end temperature value as input and returns corresponding raw value.
|
||||||
#ifdef HEATER_0_USES_THERMISTOR
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
||||||
int raw = 0;
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
||||||
byte i;
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
||||||
|
int temp2analog(int celsius) {
|
||||||
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
#ifdef HEATER_0_USES_THERMISTOR
|
||||||
{
|
int raw = 0;
|
||||||
if (heater_0_temptable[i][1] < celsius)
|
byte i;
|
||||||
{
|
|
||||||
raw = heater_0_temptable[i-1][0] +
|
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
||||||
(celsius - heater_0_temptable[i-1][1]) *
|
{
|
||||||
(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /
|
if (PGM_RD_W(heater_0_temptable[i][1]) < celsius)
|
||||||
(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]);
|
{
|
||||||
break;
|
raw = PGM_RD_W(heater_0_temptable[i-1][0]) +
|
||||||
}
|
(celsius - PGM_RD_W(heater_0_temptable[i-1][1])) *
|
||||||
}
|
(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0])) /
|
||||||
|
(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1]));
|
||||||
// Overflow: Set to last value in the table
|
break;
|
||||||
if (i == NUMTEMPS_HEATER_0) raw = heater_0_temptable[i-1][0];
|
}
|
||||||
|
}
|
||||||
return (1023 * OVERSAMPLENR) - raw;
|
|
||||||
#elif defined HEATER_0_USES_AD595
|
// Overflow: Set to last value in the table
|
||||||
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
if (i == NUMTEMPS_HEATER_0) raw = PGM_RD_W(heater_0_temptable[i-1][0]);
|
||||||
#endif
|
|
||||||
}
|
return (1023 * OVERSAMPLENR) - raw;
|
||||||
|
#elif defined HEATER_0_USES_AD595
|
||||||
// Takes bed temperature value as input and returns corresponding raw value.
|
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
||||||
// For a thermistor, it uses the RepRap thermistor temp table.
|
#endif
|
||||||
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
}
|
||||||
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
|
||||||
int temp2analogBed(int celsius) {
|
// Takes bed temperature value as input and returns corresponding raw value.
|
||||||
#ifdef BED_USES_THERMISTOR
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
||||||
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
||||||
int raw = 0;
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
||||||
byte i;
|
int temp2analogBed(int celsius) {
|
||||||
|
#ifdef BED_USES_THERMISTOR
|
||||||
for (i=1; i<BNUMTEMPS; i++)
|
|
||||||
{
|
int raw = 0;
|
||||||
if (bedtemptable[i][1] < celsius)
|
byte i;
|
||||||
{
|
|
||||||
raw = bedtemptable[i-1][0] +
|
for (i=1; i<BNUMTEMPS; i++)
|
||||||
(celsius - bedtemptable[i-1][1]) *
|
{
|
||||||
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
|
if (PGM_RD_W(bedtemptable[i][1]) < celsius)
|
||||||
(bedtemptable[i][1] - bedtemptable[i-1][1]);
|
{
|
||||||
|
raw = PGM_RD_W(bedtemptable[i-1][0]) +
|
||||||
break;
|
(celsius - PGM_RD_W(bedtemptable[i-1][1])) *
|
||||||
}
|
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
|
||||||
}
|
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
|
||||||
|
|
||||||
// Overflow: Set to last value in the table
|
break;
|
||||||
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
|
}
|
||||||
|
}
|
||||||
return (1023 * OVERSAMPLENR) - raw;
|
|
||||||
#elif defined BED_USES_AD595
|
// Overflow: Set to last value in the table
|
||||||
return lround(celsius * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
|
if (i == BNUMTEMPS) raw = PGM_RD_W(bedtemptable[i-1][0]);
|
||||||
#endif
|
|
||||||
}
|
return (1023 * OVERSAMPLENR) - raw;
|
||||||
|
#elif defined BED_USES_AD595
|
||||||
// Derived from RepRap FiveD extruder::getTemperature()
|
return lround(celsius * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
|
||||||
// For hot end temperature measurement.
|
#endif
|
||||||
float analog2temp(int raw) {
|
}
|
||||||
#ifdef HEATER_0_USES_THERMISTOR
|
|
||||||
float celsius = 0;
|
// Derived from RepRap FiveD extruder::getTemperature()
|
||||||
byte i;
|
// For hot end temperature measurement.
|
||||||
raw = (1023 * OVERSAMPLENR) - raw;
|
float analog2temp(int raw) {
|
||||||
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
#ifdef HEATER_0_USES_THERMISTOR
|
||||||
{
|
float celsius = 0;
|
||||||
if (heater_0_temptable[i][0] > raw)
|
byte i;
|
||||||
{
|
raw = (1023 * OVERSAMPLENR) - raw;
|
||||||
celsius = heater_0_temptable[i-1][1] +
|
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
||||||
(raw - heater_0_temptable[i-1][0]) *
|
{
|
||||||
(float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /
|
if (PGM_RD_W(heater_0_temptable[i][0]) > raw)
|
||||||
(float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);
|
{
|
||||||
|
celsius = PGM_RD_W(heater_0_temptable[i-1][1]) +
|
||||||
break;
|
(raw - PGM_RD_W(heater_0_temptable[i-1][0])) *
|
||||||
}
|
(float)(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1])) /
|
||||||
}
|
(float)(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0]));
|
||||||
|
break;
|
||||||
// Overflow: Set to last value in the table
|
}
|
||||||
if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];
|
}
|
||||||
|
|
||||||
return celsius;
|
// Overflow: Set to last value in the table
|
||||||
#elif defined HEATER_0_USES_AD595
|
if (i == NUMTEMPS_HEATER_0) celsius = PGM_RD_W(heater_0_temptable[i-1][1]);
|
||||||
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
|
||||||
#endif
|
return celsius;
|
||||||
}
|
#elif defined HEATER_0_USES_AD595
|
||||||
|
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
||||||
// Derived from RepRap FiveD extruder::getTemperature()
|
#endif
|
||||||
// For bed temperature measurement.
|
}
|
||||||
float analog2tempBed(int raw) {
|
|
||||||
#ifdef BED_USES_THERMISTOR
|
// Derived from RepRap FiveD extruder::getTemperature()
|
||||||
int celsius = 0;
|
// For bed temperature measurement.
|
||||||
byte i;
|
float analog2tempBed(int raw) {
|
||||||
|
#ifdef BED_USES_THERMISTOR
|
||||||
raw = (1023 * OVERSAMPLENR) - raw;
|
int celsius = 0;
|
||||||
|
byte i;
|
||||||
for (i=1; i<BNUMTEMPS; i++)
|
|
||||||
{
|
raw = (1023 * OVERSAMPLENR) - raw;
|
||||||
if (bedtemptable[i][0] > raw)
|
|
||||||
{
|
for (i=1; i<BNUMTEMPS; i++)
|
||||||
celsius = bedtemptable[i-1][1] +
|
{
|
||||||
(raw - bedtemptable[i-1][0]) *
|
if (PGM_RD_W(bedtemptable[i][0]) > raw)
|
||||||
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
|
{
|
||||||
(bedtemptable[i][0] - bedtemptable[i-1][0]);
|
celsius = PGM_RD_W(bedtemptable[i-1][1]) +
|
||||||
|
(raw - PGM_RD_W(bedtemptable[i-1][0])) *
|
||||||
break;
|
(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
|
||||||
}
|
(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
|
||||||
}
|
|
||||||
|
break;
|
||||||
// Overflow: Set to last value in the table
|
}
|
||||||
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
|
}
|
||||||
|
|
||||||
return celsius;
|
// Overflow: Set to last value in the table
|
||||||
|
if (i == BNUMTEMPS) celsius = PGM_RD_W(bedtemptable[i-1][1]);
|
||||||
#elif defined BED_USES_AD595
|
|
||||||
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
return celsius;
|
||||||
#endif
|
|
||||||
}
|
#elif defined BED_USES_AD595
|
||||||
|
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
||||||
void tp_init()
|
#endif
|
||||||
{
|
}
|
||||||
#if (HEATER_0_PIN > -1)
|
|
||||||
SET_OUTPUT(HEATER_0_PIN);
|
void tp_init()
|
||||||
#endif
|
{
|
||||||
#if (HEATER_1_PIN > -1)
|
#if (HEATER_0_PIN > -1)
|
||||||
SET_OUTPUT(HEATER_1_PIN);
|
SET_OUTPUT(HEATER_0_PIN);
|
||||||
#endif
|
#endif
|
||||||
#if (HEATER_2_PIN > -1)
|
#if (HEATER_1_PIN > -1)
|
||||||
SET_OUTPUT(HEATER_2_PIN);
|
SET_OUTPUT(HEATER_1_PIN);
|
||||||
#endif
|
#endif
|
||||||
|
#if (HEATER_2_PIN > -1)
|
||||||
#ifdef PIDTEMP
|
SET_OUTPUT(HEATER_2_PIN);
|
||||||
temp_iState_min = 0.0;
|
#endif
|
||||||
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
|
||||||
#endif //PIDTEMP
|
#ifdef PIDTEMP
|
||||||
|
temp_iState_min = 0.0;
|
||||||
// Set analog inputs
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
#endif //PIDTEMP
|
||||||
|
|
||||||
// Use timer0 for temperature measurement
|
// Set analog inputs
|
||||||
// Interleave temperature interrupt with millies interrupt
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
||||||
OCR0B = 128;
|
|
||||||
TIMSK0 |= (1<<OCIE0B);
|
// Use timer0 for temperature measurement
|
||||||
}
|
// Interleave temperature interrupt with millies interrupt
|
||||||
|
OCR0B = 128;
|
||||||
|
TIMSK0 |= (1<<OCIE0B);
|
||||||
|
}
|
||||||
void setWatch()
|
|
||||||
{
|
|
||||||
#ifdef WATCHPERIOD
|
|
||||||
if(isHeatingHotend0())
|
void setWatch()
|
||||||
{
|
{
|
||||||
watchmillis = max(1,millis());
|
#ifdef WATCHPERIOD
|
||||||
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
if(isHeatingHotend0())
|
||||||
}
|
{
|
||||||
else
|
watchmillis = max(1,millis());
|
||||||
{
|
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
||||||
watchmillis = 0;
|
}
|
||||||
}
|
else
|
||||||
#endif
|
{
|
||||||
}
|
watchmillis = 0;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
void disable_heater()
|
}
|
||||||
{
|
|
||||||
#if TEMP_0_PIN > -1
|
|
||||||
target_raw[0]=0;
|
void disable_heater()
|
||||||
#if HEATER_0_PIN > -1
|
{
|
||||||
WRITE(HEATER_0_PIN,LOW);
|
#if TEMP_0_PIN > -1
|
||||||
#endif
|
target_raw[0]=0;
|
||||||
#endif
|
#if HEATER_0_PIN > -1
|
||||||
|
WRITE(HEATER_0_PIN,LOW);
|
||||||
#if TEMP_1_PIN > -1
|
#endif
|
||||||
target_raw[1]=0;
|
#endif
|
||||||
#if HEATER_1_PIN > -1
|
|
||||||
WRITE(HEATER_1_PIN,LOW);
|
#if TEMP_1_PIN > -1
|
||||||
#endif
|
target_raw[1]=0;
|
||||||
#endif
|
#if HEATER_1_PIN > -1
|
||||||
|
WRITE(HEATER_1_PIN,LOW);
|
||||||
#if TEMP_2_PIN > -1
|
#endif
|
||||||
target_raw[2]=0;
|
#endif
|
||||||
#if HEATER_2_PIN > -1
|
|
||||||
WRITE(HEATER_2_PIN,LOW);
|
#if TEMP_2_PIN > -1
|
||||||
#endif
|
target_raw[2]=0;
|
||||||
#endif
|
#if HEATER_2_PIN > -1
|
||||||
}
|
WRITE(HEATER_2_PIN,LOW);
|
||||||
|
#endif
|
||||||
// Timer 0 is shared with millies
|
#endif
|
||||||
ISR(TIMER0_COMPB_vect)
|
}
|
||||||
{
|
|
||||||
//these variables are only accesible from the ISR, but static, so they don't loose their value
|
// Timer 0 is shared with millies
|
||||||
static unsigned char temp_count = 0;
|
ISR(TIMER0_COMPB_vect)
|
||||||
static unsigned long raw_temp_0_value = 0;
|
{
|
||||||
static unsigned long raw_temp_1_value = 0;
|
//these variables are only accesible from the ISR, but static, so they don't loose their value
|
||||||
static unsigned long raw_temp_2_value = 0;
|
static unsigned char temp_count = 0;
|
||||||
static unsigned char temp_state = 0;
|
static unsigned long raw_temp_0_value = 0;
|
||||||
|
static unsigned long raw_temp_1_value = 0;
|
||||||
switch(temp_state) {
|
static unsigned long raw_temp_2_value = 0;
|
||||||
case 0: // Prepare TEMP_0
|
static unsigned char temp_state = 0;
|
||||||
#if (TEMP_0_PIN > -1)
|
|
||||||
#if TEMP_0_PIN < 8
|
switch(temp_state) {
|
||||||
DIDR0 = 1 << TEMP_0_PIN;
|
case 0: // Prepare TEMP_0
|
||||||
#else
|
#if (TEMP_0_PIN > -1)
|
||||||
DIDR2 = 1<<(TEMP_0_PIN - 8);
|
#if TEMP_0_PIN < 8
|
||||||
ADCSRB = 1<<MUX5;
|
DIDR0 = 1 << TEMP_0_PIN;
|
||||||
#endif
|
#else
|
||||||
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
DIDR2 = 1<<(TEMP_0_PIN - 8);
|
||||||
ADCSRA |= 1<<ADSC; // Start conversion
|
ADCSRB = 1<<MUX5;
|
||||||
#endif
|
#endif
|
||||||
#ifdef ULTIPANEL
|
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
||||||
buttons_check();
|
ADCSRA |= 1<<ADSC; // Start conversion
|
||||||
#endif
|
#endif
|
||||||
temp_state = 1;
|
#ifdef ULTIPANEL
|
||||||
break;
|
buttons_check();
|
||||||
case 1: // Measure TEMP_0
|
#endif
|
||||||
#if (TEMP_0_PIN > -1)
|
temp_state = 1;
|
||||||
raw_temp_0_value += ADC;
|
break;
|
||||||
#endif
|
case 1: // Measure TEMP_0
|
||||||
temp_state = 2;
|
#if (TEMP_0_PIN > -1)
|
||||||
break;
|
raw_temp_0_value += ADC;
|
||||||
case 2: // Prepare TEMP_1
|
#endif
|
||||||
#if (TEMP_1_PIN > -1)
|
temp_state = 2;
|
||||||
#if TEMP_1_PIN < 7
|
break;
|
||||||
DIDR0 = 1<<TEMP_1_PIN;
|
case 2: // Prepare TEMP_1
|
||||||
#else
|
#if (TEMP_1_PIN > -1)
|
||||||
DIDR2 = 1<<(TEMP_1_PIN - 8);
|
#if TEMP_1_PIN < 7
|
||||||
ADCSRB = 1<<MUX5;
|
DIDR0 = 1<<TEMP_1_PIN;
|
||||||
#endif
|
#else
|
||||||
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
DIDR2 = 1<<(TEMP_1_PIN - 8);
|
||||||
ADCSRA |= 1<<ADSC; // Start conversion
|
ADCSRB = 1<<MUX5;
|
||||||
#endif
|
#endif
|
||||||
#ifdef ULTIPANEL
|
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
||||||
buttons_check();
|
ADCSRA |= 1<<ADSC; // Start conversion
|
||||||
#endif
|
#endif
|
||||||
temp_state = 3;
|
#ifdef ULTIPANEL
|
||||||
break;
|
buttons_check();
|
||||||
case 3: // Measure TEMP_1
|
#endif
|
||||||
#if (TEMP_1_PIN > -1)
|
temp_state = 3;
|
||||||
raw_temp_1_value += ADC;
|
break;
|
||||||
#endif
|
case 3: // Measure TEMP_1
|
||||||
temp_state = 4;
|
#if (TEMP_1_PIN > -1)
|
||||||
break;
|
raw_temp_1_value += ADC;
|
||||||
case 4: // Prepare TEMP_2
|
#endif
|
||||||
#if (TEMP_2_PIN > -1)
|
temp_state = 4;
|
||||||
#if TEMP_2_PIN < 7
|
break;
|
||||||
DIDR0 = 1 << TEMP_2_PIN;
|
case 4: // Prepare TEMP_2
|
||||||
#else
|
#if (TEMP_2_PIN > -1)
|
||||||
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
#if TEMP_2_PIN < 7
|
||||||
ADCSRB = 1<<MUX5;
|
DIDR0 = 1 << TEMP_2_PIN;
|
||||||
#endif
|
#else
|
||||||
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
||||||
ADCSRA |= 1<<ADSC; // Start conversion
|
ADCSRB = 1<<MUX5;
|
||||||
#endif
|
#endif
|
||||||
#ifdef ULTIPANEL
|
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
||||||
buttons_check();
|
ADCSRA |= 1<<ADSC; // Start conversion
|
||||||
#endif
|
#endif
|
||||||
temp_state = 5;
|
#ifdef ULTIPANEL
|
||||||
break;
|
buttons_check();
|
||||||
case 5: // Measure TEMP_2
|
#endif
|
||||||
#if (TEMP_2_PIN > -1)
|
temp_state = 5;
|
||||||
raw_temp_2_value += ADC;
|
break;
|
||||||
#endif
|
case 5: // Measure TEMP_2
|
||||||
temp_state = 0;
|
#if (TEMP_2_PIN > -1)
|
||||||
temp_count++;
|
raw_temp_2_value += ADC;
|
||||||
break;
|
#endif
|
||||||
default:
|
temp_state = 0;
|
||||||
SERIAL_ERROR_START;
|
temp_count++;
|
||||||
SERIAL_ERRORLNPGM("Temp measurement error!");
|
break;
|
||||||
break;
|
default:
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
|
SERIAL_ERRORLNPGM("Temp measurement error!");
|
||||||
if(temp_count >= 16) // 6 ms * 16 = 96ms.
|
break;
|
||||||
{
|
}
|
||||||
#ifdef HEATER_0_USES_AD595
|
|
||||||
current_raw[0] = raw_temp_0_value;
|
if(temp_count >= 16) // 6 ms * 16 = 96ms.
|
||||||
#else
|
{
|
||||||
current_raw[0] = 16383 - raw_temp_0_value;
|
#ifdef HEATER_0_USES_AD595
|
||||||
#endif
|
current_raw[0] = raw_temp_0_value;
|
||||||
|
#else
|
||||||
#ifdef HEATER_1_USES_AD595
|
current_raw[0] = 16383 - raw_temp_0_value;
|
||||||
current_raw[2] = raw_temp_2_value;
|
#endif
|
||||||
#else
|
|
||||||
current_raw[2] = 16383 - raw_temp_2_value;
|
#ifdef HEATER_1_USES_AD595
|
||||||
#endif
|
current_raw[2] = raw_temp_2_value;
|
||||||
|
#else
|
||||||
#ifdef BED_USES_AD595
|
current_raw[2] = 16383 - raw_temp_2_value;
|
||||||
current_raw[1] = raw_temp_1_value;
|
#endif
|
||||||
#else
|
|
||||||
current_raw[1] = 16383 - raw_temp_1_value;
|
#ifdef BED_USES_AD595
|
||||||
#endif
|
current_raw[1] = raw_temp_1_value;
|
||||||
|
#else
|
||||||
temp_meas_ready = true;
|
current_raw[1] = 16383 - raw_temp_1_value;
|
||||||
temp_count = 0;
|
#endif
|
||||||
raw_temp_0_value = 0;
|
|
||||||
raw_temp_1_value = 0;
|
temp_meas_ready = true;
|
||||||
raw_temp_2_value = 0;
|
temp_count = 0;
|
||||||
#ifdef HEATER_0_MAXTEMP
|
raw_temp_0_value = 0;
|
||||||
#if (HEATER_0_PIN > -1)
|
raw_temp_1_value = 0;
|
||||||
if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
|
raw_temp_2_value = 0;
|
||||||
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
#ifdef HEATER_0_MAXTEMP
|
||||||
analogWrite(HEATER_0_PIN, 0);
|
#if (HEATER_0_PIN > -1)
|
||||||
SERIAL_ERROR_START;
|
if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
|
||||||
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MAXTEMP triggered !!");
|
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
||||||
kill();
|
analogWrite(HEATER_0_PIN, 0);
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
#endif
|
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MAXTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
#ifdef HEATER_1_MAXTEMP
|
}
|
||||||
#if (HEATER_1_PIN > -1)
|
#endif
|
||||||
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
|
#endif
|
||||||
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
#ifdef HEATER_1_MAXTEMP
|
||||||
if(current_raw[2] >= maxttemp_1) {
|
#if (HEATER_1_PIN > -1)
|
||||||
analogWrite(HEATER_2_PIN, 0);
|
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
|
||||||
SERIAL_ERROR_START;
|
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
||||||
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MAXTEMP triggered !!");
|
if(current_raw[2] >= maxttemp_1) {
|
||||||
kill()
|
analogWrite(HEATER_2_PIN, 0);
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
#endif
|
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MAXTEMP triggered !!");
|
||||||
#endif //MAXTEMP
|
kill()
|
||||||
|
}
|
||||||
#ifdef HEATER_0_MINTEMP
|
#endif
|
||||||
#if (HEATER_0_PIN > -1)
|
#endif //MAXTEMP
|
||||||
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
|
|
||||||
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
#ifdef HEATER_0_MINTEMP
|
||||||
analogWrite(HEATER_0_PIN, 0);
|
#if (HEATER_0_PIN > -1)
|
||||||
SERIAL_ERROR_START;
|
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
|
||||||
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MINTEMP triggered !!");
|
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
||||||
kill();
|
analogWrite(HEATER_0_PIN, 0);
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
#endif
|
SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MINTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
|
}
|
||||||
#ifdef HEATER_1_MINTEMP
|
#endif
|
||||||
#if (HEATER_2_PIN > -1)
|
#endif
|
||||||
if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
|
|
||||||
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
#ifdef HEATER_1_MINTEMP
|
||||||
analogWrite(HEATER_2_PIN, 0);
|
#if (HEATER_2_PIN > -1)
|
||||||
SERIAL_ERROR_START;
|
if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
|
||||||
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MINTEMP triggered !!");
|
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
||||||
kill();
|
analogWrite(HEATER_2_PIN, 0);
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
#endif
|
SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MINTEMP triggered !!");
|
||||||
#endif //MAXTEMP
|
kill();
|
||||||
|
}
|
||||||
#ifdef BED_MINTEMP
|
#endif
|
||||||
#if (HEATER_1_PIN > -1)
|
#endif //MAXTEMP
|
||||||
if(current_raw[1] <= bed_minttemp) {
|
|
||||||
target_raw[1] = 0;
|
#ifdef BED_MINTEMP
|
||||||
WRITE(HEATER_1_PIN, 0);
|
#if (HEATER_1_PIN > -1)
|
||||||
SERIAL_ERROR_START;
|
if(current_raw[1] <= bed_minttemp) {
|
||||||
SERIAL_ERRORLNPGM("Temperatur heated bed switched off. MINTEMP triggered !!");
|
target_raw[1] = 0;
|
||||||
kill();
|
WRITE(HEATER_1_PIN, 0);
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
#endif
|
SERIAL_ERRORLNPGM("Temperatur heated bed switched off. MINTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
|
}
|
||||||
#ifdef BED_MAXTEMP
|
#endif
|
||||||
#if (HEATER_1_PIN > -1)
|
#endif
|
||||||
if(current_raw[1] >= bed_maxttemp) {
|
|
||||||
target_raw[1] = 0;
|
#ifdef BED_MAXTEMP
|
||||||
WRITE(HEATER_1_PIN, 0);
|
#if (HEATER_1_PIN > -1)
|
||||||
SERIAL_ERROR_START;
|
if(current_raw[1] >= bed_maxttemp) {
|
||||||
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
target_raw[1] = 0;
|
||||||
kill();
|
WRITE(HEATER_1_PIN, 0);
|
||||||
}
|
SERIAL_ERROR_START;
|
||||||
#endif
|
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
}
|
}
|
||||||
}
|
#endif
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,102 +1,103 @@
|
|||||||
#ifndef __ULTRALCDH
|
#ifndef __ULTRALCDH
|
||||||
#define __ULTRALCDH
|
#define __ULTRALCDH
|
||||||
#include "Configuration.h"
|
#include "Configuration.h"
|
||||||
|
|
||||||
#ifdef ULTRA_LCD
|
#ifdef ULTRA_LCD
|
||||||
|
|
||||||
void lcd_status();
|
void lcd_status();
|
||||||
void lcd_init();
|
void lcd_init();
|
||||||
void lcd_status(const char* message);
|
void lcd_status(const char* message);
|
||||||
void beep();
|
void beep();
|
||||||
void buttons_check();
|
void buttons_check();
|
||||||
|
|
||||||
|
|
||||||
#define LCD_UPDATE_INTERVAL 100
|
#define LCD_UPDATE_INTERVAL 100
|
||||||
#define STATUSTIMEOUT 15000
|
#define STATUSTIMEOUT 15000
|
||||||
|
|
||||||
|
|
||||||
#include <LiquidCrystal.h>
|
#include <LiquidCrystal.h>
|
||||||
extern LiquidCrystal lcd;
|
extern LiquidCrystal lcd;
|
||||||
|
|
||||||
|
|
||||||
#ifdef NEWPANEL
|
#ifdef NEWPANEL
|
||||||
|
|
||||||
|
|
||||||
#define EN_C (1<<BLEN_C)
|
#define EN_C (1<<BLEN_C)
|
||||||
#define EN_B (1<<BLEN_B)
|
#define EN_B (1<<BLEN_B)
|
||||||
#define EN_A (1<<BLEN_A)
|
#define EN_A (1<<BLEN_A)
|
||||||
|
|
||||||
#define CLICKED (buttons&EN_C)
|
#define CLICKED (buttons&EN_C)
|
||||||
#define BLOCK {blocking=millis()+blocktime;}
|
#define BLOCK {blocking=millis()+blocktime;}
|
||||||
#define CARDINSERTED (READ(SDCARDDETECT)==0)
|
#define CARDINSERTED (READ(SDCARDDETECT)==0)
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
//atomatic, do not change
|
//atomatic, do not change
|
||||||
#define B_LE (1<<BL_LE)
|
#define B_LE (1<<BL_LE)
|
||||||
#define B_UP (1<<BL_UP)
|
#define B_UP (1<<BL_UP)
|
||||||
#define B_MI (1<<BL_MI)
|
#define B_MI (1<<BL_MI)
|
||||||
#define B_DW (1<<BL_DW)
|
#define B_DW (1<<BL_DW)
|
||||||
#define B_RI (1<<BL_RI)
|
#define B_RI (1<<BL_RI)
|
||||||
#define B_ST (1<<BL_ST)
|
#define B_ST (1<<BL_ST)
|
||||||
#define EN_B (1<<BLEN_B)
|
#define EN_B (1<<BLEN_B)
|
||||||
#define EN_A (1<<BLEN_A)
|
#define EN_A (1<<BLEN_A)
|
||||||
|
|
||||||
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
||||||
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
|
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// blocking time for recognizing a new keypress of one key, ms
|
// blocking time for recognizing a new keypress of one key, ms
|
||||||
#define blocktime 500
|
#define blocktime 500
|
||||||
#define lcdslow 5
|
#define lcdslow 5
|
||||||
|
|
||||||
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
|
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
|
||||||
|
|
||||||
class MainMenu{
|
class MainMenu{
|
||||||
public:
|
public:
|
||||||
MainMenu();
|
MainMenu();
|
||||||
void update();
|
void update();
|
||||||
uint8_t activeline;
|
uint8_t activeline;
|
||||||
MainStatus status;
|
MainStatus status;
|
||||||
uint8_t displayStartingRow;
|
uint8_t displayStartingRow;
|
||||||
|
|
||||||
void showStatus();
|
void showStatus();
|
||||||
void showMainMenu();
|
void showMainMenu();
|
||||||
void showPrepare();
|
void showPrepare();
|
||||||
void showControl();
|
void showControl();
|
||||||
void showSD();
|
void showSD();
|
||||||
bool force_lcd_update;
|
bool force_lcd_update;
|
||||||
int lastencoderpos;
|
int lastencoderpos;
|
||||||
int8_t lineoffset;
|
int8_t lineoffset;
|
||||||
int8_t lastlineoffset;
|
int8_t lastlineoffset;
|
||||||
|
|
||||||
bool linechanging;
|
bool linechanging;
|
||||||
};
|
};
|
||||||
|
|
||||||
//conversion routines, could need some overworking
|
//conversion routines, could need some overworking
|
||||||
char *fillto(int8_t n,char *c);
|
char *fillto(int8_t n,char *c);
|
||||||
char *ftostr51(const float &x);
|
char *ftostr51(const float &x);
|
||||||
char *ftostr31(const float &x);
|
char *ftostr31(const float &x);
|
||||||
char *ftostr3(const float &x);
|
char *ftostr3(const float &x);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#define LCD_MESSAGE(x) lcd_status(x);
|
#define LCD_MESSAGE(x) lcd_status(x);
|
||||||
#define LCD_MESSAGEPGM(x) lcd_statuspgm(PSTR(x));
|
#define LCD_MESSAGEPGM(x) lcd_statuspgm(PSTR(x));
|
||||||
#define LCD_STATUS lcd_status()
|
#define LCD_STATUS lcd_status()
|
||||||
#else //no lcd
|
#else //no lcd
|
||||||
#define LCD_STATUS
|
#define LCD_STATUS
|
||||||
#define LCD_MESSAGE(x)
|
#define LCD_MESSAGE(x)
|
||||||
inline void lcd_status() {};
|
#define LCD_MESSAGEPGM(x)
|
||||||
#endif
|
inline void lcd_status() {};
|
||||||
|
#endif
|
||||||
#ifndef ULTIPANEL
|
|
||||||
#define CLICKED false
|
#ifndef ULTIPANEL
|
||||||
#define BLOCK ;
|
#define CLICKED false
|
||||||
#endif
|
#define BLOCK ;
|
||||||
|
#endif
|
||||||
void lcd_statuspgm(const char* message);
|
|
||||||
|
void lcd_statuspgm(const char* message);
|
||||||
#endif //ULTRALCD
|
|
||||||
|
#endif //ULTRALCD
|
||||||
|
|
||||||
|
Loading…
Reference in new issue