First parts 2nd extruder

master
Erik van der Zalm 13 years ago
parent a0dc66f7bf
commit aad4b75b94

@ -8,6 +8,7 @@
//#define BAUDRATE 115200 //#define BAUDRATE 115200
//#define BAUDRATE 230400 //#define BAUDRATE 230400
#define EXTRUDERS 1
// Frequency limit // Frequency limit
// See nophead's blog for more info // See nophead's blog for more info

@ -174,7 +174,7 @@ static unsigned long stepper_inactive_time = 0;
static unsigned long starttime=0; static unsigned long starttime=0;
static unsigned long stoptime=0; static unsigned long stoptime=0;
static uint8_t tmp_extruder;
//=========================================================================== //===========================================================================
//=============================ROUTINES============================= //=============================ROUTINES=============================
@ -641,7 +641,6 @@ inline void process_commands()
//processed in write to file routine above //processed in write to file routine above
//card,saving = false; //card,saving = false;
break; break;
#endif //SDSUPPORT #endif //SDSUPPORT
case 30: //M30 take time since the start of the SD print or an M109 command case 30: //M30 take time since the start of the SD print or an M109 command
@ -684,19 +683,36 @@ inline void process_commands()
} }
break; break;
case 104: // M104 case 104: // M104
if (code_seen('S')) setTargetHotend0(code_value()); tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO("M104 Invalid extruder ");
SERIAL_ECHOLN(tmp_extruder);
break;
}
}
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
setWatch(); setWatch();
break; break;
case 140: // M140 set bed temp case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value()); if (code_seen('S')) setTargetBed(code_value());
break; break;
case 105 : // M105 case 105 : // M105
//SERIAL_ECHOLN(freeMemory()); tmp_extruder = active_extruder;
//test watchdog: if(code_seen('T')) {
//delay(20000); tmp_extruder = code_value();
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595) if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO("M105 Invalid extruder ");
SERIAL_ECHOLN(tmp_extruder);
break;
}
}
#if (TEMP_0_PIN > -1) || (TEMP_2_PIN > -1)
SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL( degHotend0()); SERIAL_PROTOCOL( degHotend(tmp_extruder));
#if TEMP_1_PIN > -1 #if TEMP_1_PIN > -1
SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL(degBed()); SERIAL_PROTOCOL(degBed());
@ -715,41 +731,51 @@ inline void process_commands()
break; break;
case 109: case 109:
{// M109 - Wait for extruder heater to reach target. {// M109 - Wait for extruder heater to reach target.
LCD_MESSAGEPGM("Heating..."); tmp_extruder = active_extruder;
#ifdef AUTOTEMP if(code_seen('T')) {
autotemp_enabled=false; tmp_extruder = code_value();
#endif if(tmp_extruder >= EXTRUDERS) {
if (code_seen('S')) setTargetHotend0(code_value()); SERIAL_ECHO_START;
#ifdef AUTOTEMP SERIAL_ECHO("M109 Invalid extruder ");
if (code_seen('S')) autotemp_min=code_value(); SERIAL_ECHOLN(tmp_extruder);
if (code_seen('T')) autotemp_max=code_value(); break;
if (code_seen('F')) }
{ }
autotemp_factor=code_value(); LCD_MESSAGEPGM("Heating...");
autotemp_enabled=true; #ifdef AUTOTEMP
} autotemp_enabled=false;
#endif #endif
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
setWatch(); #ifdef AUTOTEMP
codenum = millis(); if (code_seen('S')) autotemp_min=code_value();
if (code_seen('G')) autotemp_max=code_value();
/* See if we are heating up or cooling down */ if (code_seen('F'))
bool target_direction = isHeatingHotend0(); // true if heating, false if cooling {
autotemp_factor=code_value();
#ifdef TEMP_RESIDENCY_TIME autotemp_enabled=true;
long residencyStart; }
residencyStart = -1; #endif
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ setWatch();
while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0())) || codenum = millis();
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else /* See if we are heating up or cooling down */
while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()&&(CooldownNoWait==false)) ) { bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
#endif //TEMP_RESIDENCY_TIME
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder))) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 ) if( (millis() - codenum) > 1000 )
{ //Print Temp Reading every 1 second while heating up/cooling down { //Print Temp Reading every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOLLN( degHotend0() ); SERIAL_PROTOCOLLN( degHotend(tmp_extruder) );
codenum = millis(); codenum = millis();
} }
manage_heater(); manage_heater();
@ -757,9 +783,9 @@ inline void process_commands()
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */ or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) || if ((residencyStart == -1 && target_direction && !isHeatingHotend(tmp_extruder)) ||
(residencyStart == -1 && !target_direction && !isCoolingHotend0()) || (residencyStart == -1 && !target_direction && !isCoolingHotend(tmp_extruder)) ||
(residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) ) (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
{ {
residencyStart = millis(); residencyStart = millis();
} }
@ -943,8 +969,6 @@ inline void process_commands()
#ifdef PIDTEMP #ifdef PIDTEMP
case 301: // M301 case 301: // M301
{ {
if(code_seen('P')) Kp = code_value(); if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT; if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT; if(code_seen('D')) Kd = code_value()/PID_dT;
@ -989,6 +1013,18 @@ inline void process_commands()
} }
} }
else if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO("T");
SERIAL_ECHO(tmp_extruder);
SERIAL_ECHOLN("Invalid extruder");
}
else {
active_extruder = tmp_extruder;
}
}
else else
{ {
SERIAL_ECHO_START; SERIAL_ECHO_START;

@ -81,6 +81,8 @@ float max_z_jerk;
float mintravelfeedrate; float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS]; unsigned long axis_steps_per_sqr_second[NUM_AXIS];
uint8_t active_extruder = 0;
// The current position of the tool in absolute steps // The current position of the tool in absolute steps
long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
static float previous_speed[4]; // Speed of previous path line segment static float previous_speed[4]; // Speed of previous path line segment

@ -94,6 +94,7 @@ extern float max_z_jerk;
extern float mintravelfeedrate; extern float mintravelfeedrate;
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS]; extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
extern uint8_t active_extruder;
#ifdef AUTOTEMP #ifdef AUTOTEMP
extern bool autotemp_enabled; extern bool autotemp_enabled;

@ -62,9 +62,18 @@ extern float Kp,Ki,Kd,Kc;
inline float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);}; inline float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};
inline float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);}; inline float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};
inline float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);}; inline float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};
inline float degHotend(uint8_t extruder){
if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);
};
inline float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);}; inline float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);};
inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);}; inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};
inline float degTargetHotend(uint8_t extruder){
if(extruder == 0) return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);
};
inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);}; inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
inline void setTargetHotend0(const float &celsius) inline void setTargetHotend0(const float &celsius)
@ -75,14 +84,26 @@ inline void setTargetHotend0(const float &celsius)
#endif //PIDTEMP #endif //PIDTEMP
}; };
inline void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);}; inline void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
inline float setTargetHotend(const float &celcius, uint8_t extruder){
if(extruder == 0) setTargetHotend0(celcius);
if(extruder == 1) setTargetHotend1(celcius);
};
inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);}; inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];}; inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];}; inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
inline float isHeatingHotend(uint8_t extruder){
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];
};
inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];}; inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};
inline bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];}; inline bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};
inline bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];}; inline bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};
inline float isCoolingHotend(uint8_t extruder){
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];
};
inline bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];}; inline bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];};
void disable_heater(); void disable_heater();

Loading…
Cancel
Save