ARRAY_BY_EXTRUDERS, shorthand to sync planner

- Add some documentation to planner and stepper headers
- Patch up RAMBO pins with undefs
- Add `sync_plan_position` inline to set current XYZE
- Swap indices in `extruder_offset` to fix initialization values
master
Scott Lahteine 10 years ago
parent 2b0c25a091
commit afff968e88

@ -211,72 +211,37 @@ bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply = 100; //100->1 200->2 int feedmultiply = 100; //100->1 200->2
int saved_feedmultiply; int saved_feedmultiply;
int extrudemultiply = 100; //100->1 200->2 int extrudemultiply = 100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = { 100 int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
#if EXTRUDERS > 1
, 100
#if EXTRUDERS > 2
, 100
#if EXTRUDERS > 3
, 100
#endif
#endif
#endif
};
bool volumetric_enabled = false; bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
#if EXTRUDERS > 1 float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
, DEFAULT_NOMINAL_FILAMENT_DIA float current_position[NUM_AXIS] = { 0.0 };
#if EXTRUDERS > 2 float home_offset[3] = { 0 };
, DEFAULT_NOMINAL_FILAMENT_DIA
#if EXTRUDERS > 3
, DEFAULT_NOMINAL_FILAMENT_DIA
#endif
#endif
#endif
};
float volumetric_multiplier[EXTRUDERS] = {1.0
#if EXTRUDERS > 1
, 1.0
#if EXTRUDERS > 2
, 1.0
#if EXTRUDERS > 3
, 1.0
#endif
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float home_offset[3] = { 0, 0, 0 };
#ifdef DELTA #ifdef DELTA
float endstop_adj[3] = { 0, 0, 0 }; float endstop_adj[3] = { 0 };
#elif defined(Z_DUAL_ENDSTOPS) #elif defined(Z_DUAL_ENDSTOPS)
float z_endstop_adj = 0; float z_endstop_adj = 0;
#endif #endif
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = { false, false, false }; bool axis_known_position[3] = { false };
// Extruder offset // Extruder offset
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE #ifndef EXTRUDER_OFFSET_X
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane #define EXTRUDER_OFFSET_X 0
#else
#define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
#endif
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X)
EXTRUDER_OFFSET_X
#else
0
#endif #endif
, #ifndef EXTRUDER_OFFSET_Y
#if defined(EXTRUDER_OFFSET_Y) #define EXTRUDER_OFFSET_Y 0
EXTRUDER_OFFSET_Y #endif
#ifndef DUAL_X_CARRIAGE
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
#else #else
0 #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
#endif #endif
}; #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
#endif #endif
uint8_t active_extruder = 0; uint8_t active_extruder = 0;
@ -295,28 +260,8 @@ int fanSpeed = 0;
#ifdef FWRETRACT #ifdef FWRETRACT
bool autoretract_enabled = false; bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false bool retracted[EXTRUDERS] = { false };
#if EXTRUDERS > 1 bool retracted_swap[EXTRUDERS] = { false };
, false
#if EXTRUDERS > 2
, false
#if EXTRUDERS > 3
, false
#endif
#endif
#endif
};
bool retracted_swap[EXTRUDERS] = { false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#if EXTRUDERS > 3
, false
#endif
#endif
#endif
};
float retract_length = RETRACT_LENGTH; float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_length_swap = RETRACT_LENGTH_SWAP;
@ -385,9 +330,9 @@ const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:"; const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0, 0, 0, 0 }; static float destination[NUM_AXIS] = { 0 };
static float offset[3] = { 0, 0, 0 }; static float offset[3] = { 0 };
#ifndef DELTA #ifndef DELTA
static bool home_all_axis = true; static bool home_all_axis = true;
@ -993,7 +938,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
// second X-carriage offset when homed - otherwise X2_HOME_POS is used. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// This allow soft recalibration of the second extruder offset position without firmware reflash // This allow soft recalibration of the second extruder offset position without firmware reflash
// (through the M218 command). // (through the M218 command).
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS; return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
} }
static int x_home_dir(int extruder) { static int x_home_dir(int extruder) {
@ -1017,14 +962,14 @@ static void axis_is_at_home(int axis) {
if (active_extruder != 0) { if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder); current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS; min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS); max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
return; return;
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS]; min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS], max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset); max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
return; return;
} }
} }
@ -1077,12 +1022,18 @@ static void axis_is_at_home(int axis) {
#endif #endif
} }
/**
* Shorthand to tell the planner our current position (in mm).
*/
inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
#ifndef DELTA #ifndef DELTA
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal"); planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
@ -1093,13 +1044,13 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
//uncorrected_position.debug("position before"); //uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position(); vector_3 corrected_position = plan_get_position();
// corrected_position.debug("position after"); //corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x; current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y; current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z; current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} }
#endif #endif
#else // not AUTO_BED_LEVELING_GRID #else // not AUTO_BED_LEVELING_GRID
@ -1124,9 +1075,9 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
vector_3 corrected_position = plan_get_position(); vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x; current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y; current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z; current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} }
#endif // AUTO_BED_LEVELING_GRID #endif // AUTO_BED_LEVELING_GRID
@ -1172,18 +1123,14 @@ static void run_z_probe() {
endstops_hit_on_purpose(); endstops_hit_on_purpose();
// move back down slowly to find bed // move back down slowly to find bed
if (homing_bump_divisor[Z_AXIS] >= 1) {
if (homing_bump_divisor[Z_AXIS] >= 1) feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
{
feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
} }
else else {
{ feedrate = homing_feedrate[Z_AXIS]/10;
feedrate = homing_feedrate[Z_AXIS]/10; SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
} }
zPosition -= home_retract_mm(Z_AXIS) * 2; zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -1191,7 +1138,7 @@ static void run_z_probe() {
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to // make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
} }
@ -1471,7 +1418,7 @@ static void homeaxis(int axis) {
#endif #endif
current_position[axis] = 0; current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
@ -1497,7 +1444,7 @@ static void homeaxis(int axis) {
st_synchronize(); st_synchronize();
current_position[axis] = 0; current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[axis] = -home_retract_mm(axis) * axis_home_dir; destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -1520,7 +1467,7 @@ static void homeaxis(int axis) {
if (axis==Z_AXIS) if (axis==Z_AXIS)
{ {
feedrate = homing_feedrate[axis]; feedrate = homing_feedrate[axis];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
if (axis_home_dir > 0) if (axis_home_dir > 0)
{ {
destination[axis] = (-1) * fabs(z_endstop_adj); destination[axis] = (-1) * fabs(z_endstop_adj);
@ -1540,7 +1487,7 @@ static void homeaxis(int axis) {
#ifdef DELTA #ifdef DELTA
// retrace by the amount specified in endstop_adj // retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * axis_home_dir < 0) { if (endstop_adj[axis] * axis_home_dir < 0) {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[axis] = endstop_adj[axis]; destination[axis] = endstop_adj[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
@ -1596,7 +1543,7 @@ void refresh_cmd_timeout(void)
calculate_delta(current_position); // change cartesian kinematic to delta kinematic; calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else #else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
prepare_move(); prepare_move();
} }
@ -1612,7 +1559,7 @@ void refresh_cmd_timeout(void)
calculate_delta(current_position); // change cartesian kinematic to delta kinematic; calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else #else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
//prepare_move(); //prepare_move();
} }
@ -1789,7 +1736,7 @@ inline void gcode_G28() {
// Move all carriages up together until the first endstop is hit. // Move all carriages up together until the first endstop is hit.
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0; for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH; for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS]; feedrate = 1.732 * homing_feedrate[X_AXIS];
@ -1829,7 +1776,7 @@ inline void gcode_G28() {
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir; destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
@ -1844,7 +1791,7 @@ inline void gcode_G28() {
axis_is_at_home(X_AXIS); axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS); axis_is_at_home(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
destination[X_AXIS] = current_position[X_AXIS]; destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@ -1921,7 +1868,7 @@ inline void gcode_G28() {
feedrate = XY_TRAVEL_SPEED / 60; feedrate = XY_TRAVEL_SPEED / 60;
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
current_position[X_AXIS] = destination[X_AXIS]; current_position[X_AXIS] = destination[X_AXIS];
@ -1973,7 +1920,7 @@ inline void gcode_G28() {
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif // else DELTA #endif // else DELTA
@ -1998,7 +1945,7 @@ inline void gcode_G28() {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
mbl.active = 1; mbl.active = 1;
} }
#endif #endif
@ -2069,7 +2016,7 @@ inline void gcode_G28() {
int ix, iy; int ix, iy;
if (probe_point == 0) { if (probe_point == 0) {
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} else { } else {
ix = (probe_point-1) % MESH_NUM_X_POINTS; ix = (probe_point-1) % MESH_NUM_X_POINTS;
iy = (probe_point-1) / MESH_NUM_X_POINTS; iy = (probe_point-1) / MESH_NUM_X_POINTS;
@ -2242,7 +2189,7 @@ inline void gcode_G28() {
current_position[X_AXIS] = uncorrected_position.x; current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y; current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z; current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
} }
@ -2443,7 +2390,7 @@ inline void gcode_G28() {
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
} }
#endif // !DELTA #endif // !DELTA
@ -2504,7 +2451,7 @@ inline void gcode_G92() {
didXYZ = true; didXYZ = true;
} }
} }
if (didXYZ) plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); if (didXYZ) sync_plan_position();
} }
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -3762,23 +3709,23 @@ inline void gcode_M206() {
inline void gcode_M218() { inline void gcode_M218() {
if (setTargetedHotend(218)) return; if (setTargetedHotend(218)) return;
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value(); if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value(); if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value(); if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
#endif #endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) { for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
#endif #endif
} }
SERIAL_EOL; SERIAL_EOL;
@ -4469,13 +4416,13 @@ inline void gcode_M503() {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][0]); SERIAL_ECHO(extruder_offset[0][X_AXIS]);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][0]); SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]); SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
break; break;
case DXC_FULL_CONTROL_MODE: case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE: case DXC_AUTO_PARK_MODE:
@ -4610,11 +4557,11 @@ inline void gcode_T() {
// apply Y & Z extruder offset (x offset is already used in determining home pos) // apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] - current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] + extruder_offset[active_extruder][Y_AXIS] +
extruder_offset[Y_AXIS][tmp_extruder]; extruder_offset[tmp_extruder][Y_AXIS];
current_position[Z_AXIS] = current_position[Z_AXIS] - current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] + extruder_offset[active_extruder][Z_AXIS] +
extruder_offset[Z_AXIS][tmp_extruder]; extruder_offset[tmp_extruder][Z_AXIS];
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
@ -4644,7 +4591,7 @@ inline void gcode_T() {
#else // !DUAL_X_CARRIAGE #else // !DUAL_X_CARRIAGE
// Offset extruder (only by XY) // Offset extruder (only by XY)
for (int i=X_AXIS; i<=Y_AXIS; i++) for (int i=X_AXIS; i<=Y_AXIS; i++)
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder]; current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
// Set the new active extruder and position // Set the new active extruder and position
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
#endif // !DUAL_X_CARRIAGE #endif // !DUAL_X_CARRIAGE
@ -4653,7 +4600,7 @@ inline void gcode_T() {
//sent position to plan_set_position(); //sent position to plan_set_position();
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
#else #else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
#endif #endif
// Move to the old position if 'F' was in the parameters // Move to the old position if 'F' was in the parameters
if (make_move && !Stopped) prepare_move(); if (make_move && !Stopped) prepare_move();
@ -5494,7 +5441,7 @@ for (int s = 1; s <= steps; s++) {
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1); current_position[E_AXIS], max_feedrate[X_AXIS], 1);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); sync_plan_position();
st_synchronize(); st_synchronize();
extruder_duplication_enabled = true; extruder_duplication_enabled = true;
active_extruder_parked = false; active_extruder_parked = false;

@ -22,6 +22,17 @@
#endif #endif
#endif #endif
#undef X_MS1_PIN
#undef X_MS2_PIN
#undef Y_MS1_PIN
#undef Y_MS2_PIN
#undef Z_MS1_PIN
#undef Z_MS2_PIN
#undef E0_MS1_PIN
#undef E0_MS2_PIN
#undef E1_MS1_PIN
#undef E1_MS2_PIN
#define X_STEP_PIN 37 #define X_STEP_PIN 37
#define X_DIR_PIN 48 #define X_DIR_PIN 48
#define X_MIN_PIN 12 #define X_MIN_PIN 12
@ -75,6 +86,7 @@
#define E1_MS1_PIN 63 #define E1_MS1_PIN 63
#define E1_MS2_PIN 64 #define E1_MS2_PIN 64
#undef DIGIPOTSS_PIN
#define DIGIPOTSS_PIN 38 #define DIGIPOTSS_PIN 38
#define DIGIPOT_CHANNELS {4,5,3,0,1} // X Y Z E0 E1 digipot channels to stepper driver mapping #define DIGIPOT_CHANNELS {4,5,3,0,1} // X Y Z E0 E1 digipot channels to stepper driver mapping

@ -342,7 +342,7 @@ void planner_recalculate_trapezoids() {
// b. No speed reduction within one block requires faster deceleration than the one, true constant // b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration. // acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if // 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true // a. The speed increase within one block would require faster acceleration than the one, true
// constant acceleration. // constant acceleration.
// //
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to // When these stages are complete all blocks have an entry_factor that will allow all speed changes to

@ -80,21 +80,37 @@ extern volatile unsigned char block_buffer_tail;
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING) #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
#if defined(ENABLE_AUTO_BED_LEVELING) #if defined(ENABLE_AUTO_BED_LEVELING)
#include "vector_3.h" #include "vector_3.h"
// this holds the required transform to compensate for bed level
// Transform required to compensate for bed level
extern matrix_3x3 plan_bed_level_matrix; extern matrix_3x3 plan_bed_level_matrix;
// Get the position applying the bed level matrix if enabled
/**
* Get the position applying the bed level matrix
*/
vector_3 plan_get_position(); vector_3 plan_get_position();
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimeters. Feed rate specifies the speed of the motion. /**
* Add a new linear movement to the buffer. x, y, z are the signed, absolute target position in
* millimeters. Feed rate specifies the (target) speed of the motion.
*/
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder); void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
// Set position. Used for G92 instructions.
/**
* Set the planner positions. Used for G92 instructions.
* Multiplies by axis_steps_per_unit[] to set stepper positions.
* Clears previous speed values.
*/
void plan_set_position(float x, float y, float z, const float &e); void plan_set_position(float x, float y, float z, const float &e);
#else #else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder); void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
void plan_set_position(const float &x, const float &y, const float &z, const float &e); void plan_set_position(const float &x, const float &y, const float &z, const float &e);
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
void plan_set_e_position(const float &e); void plan_set_e_position(const float &e);

@ -1205,7 +1205,7 @@ void microstep_init() {
pinMode(E0_MS1_PIN,OUTPUT); pinMode(E0_MS1_PIN,OUTPUT);
pinMode(E0_MS2_PIN,OUTPUT); pinMode(E0_MS2_PIN,OUTPUT);
const uint8_t microstep_modes[] = MICROSTEP_MODES; const uint8_t microstep_modes[] = MICROSTEP_MODES;
for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++) for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
microstep_mode(i, microstep_modes[i]); microstep_mode(i, microstep_modes[i]);
#endif #endif
} }

Loading…
Cancel
Save