force inline

master
Bernhard 13 years ago
parent 311627141b
commit b19c8b74b9

@ -32,6 +32,7 @@
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H) #if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
#include "MarlinSerial.h" #include "MarlinSerial.h"
#include "Marlin.h"
@ -41,7 +42,7 @@
#endif #endif
inline void store_char(unsigned char c) FORCE_INLINE void store_char(unsigned char c)
{ {
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE; int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;

@ -24,6 +24,8 @@
#include <inttypes.h> #include <inttypes.h>
#include <Stream.h> #include <Stream.h>
#define FORCE_INLINE __attribute__((always_inline)) inline
// Define constants and variables for buffering incoming serial data. We're // Define constants and variables for buffering incoming serial data. We're
@ -55,12 +57,12 @@ class MarlinSerial //: public Stream
int read(void); int read(void);
void flush(void); void flush(void);
inline int available(void) FORCE_INLINE int available(void)
{ {
return (unsigned int)(RX_BUFFER_SIZE + rx_buffer.head - rx_buffer.tail) % RX_BUFFER_SIZE; return (unsigned int)(RX_BUFFER_SIZE + rx_buffer.head - rx_buffer.tail) % RX_BUFFER_SIZE;
} }
inline void write(uint8_t c) FORCE_INLINE void write(uint8_t c)
{ {
while (!((UCSR0A) & (1 << UDRE0))) while (!((UCSR0A) & (1 << UDRE0)))
; ;
@ -69,7 +71,7 @@ class MarlinSerial //: public Stream
} }
inline void checkRx(void) FORCE_INLINE void checkRx(void)
{ {
if((UCSR0A & (1<<RXC0)) != 0) { if((UCSR0A & (1<<RXC0)) != 0) {
unsigned char c = UDR0; unsigned char c = UDR0;
@ -94,27 +96,27 @@ class MarlinSerial //: public Stream
public: public:
inline void write(const char *str) FORCE_INLINE void write(const char *str)
{ {
while (*str) while (*str)
write(*str++); write(*str++);
} }
inline void write(const uint8_t *buffer, size_t size) FORCE_INLINE void write(const uint8_t *buffer, size_t size)
{ {
while (size--) while (size--)
write(*buffer++); write(*buffer++);
} }
inline void print(const String &s) FORCE_INLINE void print(const String &s)
{ {
for (int i = 0; i < s.length(); i++) { for (int i = 0; i < s.length(); i++) {
write(s[i]); write(s[i]);
} }
} }
inline void print(const char *str) FORCE_INLINE void print(const char *str)
{ {
write(str); write(str);
} }

@ -62,7 +62,7 @@ extern float Kp,Ki,Kd,Kc;
FORCE_INLINE float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);}; FORCE_INLINE float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};
FORCE_INLINE float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);}; FORCE_INLINE float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};
FORCE_INLINE float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);}; FORCE_INLINE float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};
inline float degHotend(uint8_t extruder){ FORCE_INLINE float degHotend(uint8_t extruder){
if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]); if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]); if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);
}; };
@ -74,7 +74,7 @@ inline float degTargetHotend(uint8_t extruder){
if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]); if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);
}; };
inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);}; FORCE_INLINE float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
FORCE_INLINE void setTargetHotend0(const float &celsius) FORCE_INLINE void setTargetHotend0(const float &celsius)
{ {
@ -84,27 +84,27 @@ FORCE_INLINE void setTargetHotend0(const float &celsius)
#endif //PIDTEMP #endif //PIDTEMP
}; };
FORCE_INLINE void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);}; FORCE_INLINE void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
inline float setTargetHotend(const float &celcius, uint8_t extruder){ FORCE_INLINE float setTargetHotend(const float &celcius, uint8_t extruder){
if(extruder == 0) setTargetHotend0(celcius); if(extruder == 0) setTargetHotend0(celcius);
if(extruder == 1) setTargetHotend1(celcius); if(extruder == 1) setTargetHotend1(celcius);
}; };
inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);}; FORCE_INLINE void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
FORCE_INLINE bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];}; FORCE_INLINE bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
FORCE_INLINE bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];}; FORCE_INLINE bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
inline float isHeatingHotend(uint8_t extruder){ FORCE_INLINE float isHeatingHotend(uint8_t extruder){
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]; if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1]; if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];
}; };
inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];}; FORCE_INLINE bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};
FORCE_INLINE bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];}; FORCE_INLINE bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};
FORCE_INLINE bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];}; FORCE_INLINE bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};
inline float isCoolingHotend(uint8_t extruder){ FORCE_INLINE float isCoolingHotend(uint8_t extruder){
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0]; if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1]; if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];
}; };
inline bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];}; FORCE_INLINE bool isCoolingBed() {return target_raw[TEMPSENSOR_BED] < current_raw[TEMPSENSOR_BED];};
void disable_heater(); void disable_heater();
void setWatch(); void setWatch();

Loading…
Cancel
Save