|
|
@ -7301,23 +7301,23 @@ void plan_arc(
|
|
|
|
) {
|
|
|
|
) {
|
|
|
|
|
|
|
|
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
|
|
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
|
|
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
|
|
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
|
|
r_axis1 = -offset[Y_AXIS],
|
|
|
|
r_Y = -offset[Y_AXIS],
|
|
|
|
rt_axis0 = target[X_AXIS] - center_axis0,
|
|
|
|
rt_X = target[X_AXIS] - center_X,
|
|
|
|
rt_axis1 = target[Y_AXIS] - center_axis1;
|
|
|
|
rt_Y = target[Y_AXIS] - center_Y;
|
|
|
|
|
|
|
|
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
|
|
float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
|
|
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
|
|
|
|
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
|
|
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
|
|
|
|
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
|
|
|
|
angular_travel += RADIANS(360);
|
|
|
|
angular_travel == RADIANS(360);
|
|
|
|
|
|
|
|
|
|
|
|
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
|
|
|
|
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
|
|
|
|
if (mm_of_travel < 0.001) return;
|
|
|
|
if (mm_of_travel < 0.001) return;
|
|
|
@ -7359,9 +7359,7 @@ void plan_arc(
|
|
|
|
float sin_T = theta_per_segment;
|
|
|
|
float sin_T = theta_per_segment;
|
|
|
|
|
|
|
|
|
|
|
|
float arc_target[NUM_AXIS];
|
|
|
|
float arc_target[NUM_AXIS];
|
|
|
|
float sin_Ti;
|
|
|
|
float sin_Ti, cos_Ti, r_new_Y;
|
|
|
|
float cos_Ti;
|
|
|
|
|
|
|
|
float r_axisi;
|
|
|
|
|
|
|
|
uint16_t i;
|
|
|
|
uint16_t i;
|
|
|
|
int8_t count = 0;
|
|
|
|
int8_t count = 0;
|
|
|
|
|
|
|
|
|
|
|
@ -7373,28 +7371,29 @@ void plan_arc(
|
|
|
|
|
|
|
|
|
|
|
|
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
|
|
|
|
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
|
|
|
|
|
|
|
|
|
|
|
|
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
|
|
|
for (i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
|
|
|
|
|
|
|
|
if (count < N_ARC_CORRECTION) {
|
|
|
|
if (++count < N_ARC_CORRECTION) {
|
|
|
|
// Apply vector rotation matrix to previous r_axis0 / 1
|
|
|
|
// Apply vector rotation matrix to previous r_X / 1
|
|
|
|
r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
|
|
|
|
r_new_Y = r_X * sin_T + r_Y * cos_T;
|
|
|
|
r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
|
|
|
|
r_X = r_X * cos_T - r_Y * sin_T;
|
|
|
|
r_axis1 = r_axisi;
|
|
|
|
r_Y = r_new_Y;
|
|
|
|
count++;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
|
|
|
|
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
|
|
|
|
|
|
// For now, compute both at the same time.
|
|
|
|
cos_Ti = cos(i * theta_per_segment);
|
|
|
|
cos_Ti = cos(i * theta_per_segment);
|
|
|
|
sin_Ti = sin(i * theta_per_segment);
|
|
|
|
sin_Ti = sin(i * theta_per_segment);
|
|
|
|
r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
|
|
|
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
|
|
|
r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
|
|
|
|
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
|
|
|
|
count = 0;
|
|
|
|
count = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Update arc_target location
|
|
|
|
// Update arc_target location
|
|
|
|
arc_target[X_AXIS] = center_axis0 + r_axis0;
|
|
|
|
arc_target[X_AXIS] = center_X + r_X;
|
|
|
|
arc_target[Y_AXIS] = center_axis1 + r_axis1;
|
|
|
|
arc_target[Y_AXIS] = center_Y + r_Y;
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
|
|
|
|
|
|
|
|