@ -127,57 +127,34 @@ void matrix_3x3::set_to_identity()
matrix [ 6 ] = 0 ; matrix [ 7 ] = 0 ; matrix [ 8 ] = 1 ;
matrix [ 6 ] = 0 ; matrix [ 7 ] = 0 ; matrix [ 8 ] = 1 ;
}
}
matrix_3x3 matrix_3x3 : : create_look_at ( vector_3 target , vector_3 up )
matrix_3x3 matrix_3x3 : : create_look_at ( vector_3 target )
{
{
// There are lots of examples of look at code on the internet that don't do all these noramize and also find the position
vector_3 z_row = vector_3 ( target . x , target . y , target . z ) . get_normal ( ) ;
// through several dot products. The problem with them is that they have a bit of error in that all the vectors arn't normal and need to be.
vector_3 x_row = vector_3 ( 1 , 0 , - target . x / target . z ) . get_normal ( ) ;
vector_3 z_row = vector_3 ( - target . x , - target . y , - target . z ) . get_normal ( ) ;
vector_3 y_row = vector_3 ( 0 , 1 , - target . y / target . z ) . get_normal ( ) ;
vector_3 x_row = vector_3 : : cross ( up , z_row ) . get_normal ( ) ;
vector_3 y_row = vector_3 : : cross ( z_row , x_row ) . get_normal ( ) ;
// x_row.debug("x_row");
// x_row.debug("x_row");
// y_row.debug("y_row");
// y_row.debug("y_row");
// z_row.debug("z_row");
// z_row.debug("z_row");
matrix_3x3 rot = matrix_3x3 : : create_from_rows ( vector_3 ( x_row . x , y_row . x , z_row . x ) ,
vector_3 ( x_row . y , y_row . y , z_row . y ) ,
vector_3 ( x_row . z , y_row . z , z_row . z ) ) ;
//rot.debug("rot");
// create the matrix already correctly transposed
matrix_3x3 rot = matrix_3x3 : : create_from_rows ( vector_3 ( x_row . x , x_row . y , x_row . z ) ,
vector_3 ( y_row . x , y_row . y , y_row . z ) ,
vector_3 ( z_row . x , z_row . y , z_row . z ) ) ;
// rot.debug("rot");
return rot ;
return rot ;
}
}
matrix_3x3 matrix_3x3 : : create_inverse ( matrix_3x3 original )
{
matrix_3x3 matrix_3x3 : : transpose ( matrix_3x3 original )
//original.debug("original");
{
float * A = original . matrix ;
matrix_3x3 new_matrix ;
float determinant =
new_matrix . matrix [ 0 ] = original . matrix [ 0 ] ; new_matrix . matrix [ 1 ] = original . matrix [ 3 ] ; new_matrix . matrix [ 2 ] = original . matrix [ 6 ] ;
+ A [ 0 * 3 + 0 ] * ( A [ 1 * 3 + 1 ] * A [ 2 * 3 + 2 ] - A [ 2 * 3 + 1 ] * A [ 1 * 3 + 2 ] )
new_matrix . matrix [ 3 ] = original . matrix [ 1 ] ; new_matrix . matrix [ 4 ] = original . matrix [ 4 ] ; new_matrix . matrix [ 5 ] = original . matrix [ 7 ] ;
- A [ 0 * 3 + 1 ] * ( A [ 1 * 3 + 0 ] * A [ 2 * 3 + 2 ] - A [ 1 * 3 + 2 ] * A [ 2 * 3 + 0 ] )
new_matrix . matrix [ 6 ] = original . matrix [ 2 ] ; new_matrix . matrix [ 7 ] = original . matrix [ 5 ] ; new_matrix . matrix [ 8 ] = original . matrix [ 8 ] ;
+ A [ 0 * 3 + 2 ] * ( A [ 1 * 3 + 0 ] * A [ 2 * 3 + 1 ] - A [ 1 * 3 + 1 ] * A [ 2 * 3 + 0 ] ) ;
return new_matrix ;
matrix_3x3 inverse ;
inverse . matrix [ 0 * 3 + 0 ] = + ( A [ 1 * 3 + 1 ] * A [ 2 * 3 + 2 ] - A [ 2 * 3 + 1 ] * A [ 1 * 3 + 2 ] ) / determinant ;
inverse . matrix [ 0 * 3 + 1 ] = - ( A [ 0 * 3 + 1 ] * A [ 2 * 3 + 2 ] - A [ 0 * 3 + 2 ] * A [ 2 * 3 + 1 ] ) / determinant ;
inverse . matrix [ 0 * 3 + 2 ] = + ( A [ 0 * 3 + 1 ] * A [ 1 * 3 + 2 ] - A [ 0 * 3 + 2 ] * A [ 1 * 3 + 1 ] ) / determinant ;
inverse . matrix [ 1 * 3 + 0 ] = - ( A [ 1 * 3 + 0 ] * A [ 2 * 3 + 2 ] - A [ 1 * 3 + 2 ] * A [ 2 * 3 + 0 ] ) / determinant ;
inverse . matrix [ 1 * 3 + 1 ] = + ( A [ 0 * 3 + 0 ] * A [ 2 * 3 + 2 ] - A [ 0 * 3 + 2 ] * A [ 2 * 3 + 0 ] ) / determinant ;
inverse . matrix [ 1 * 3 + 2 ] = - ( A [ 0 * 3 + 0 ] * A [ 1 * 3 + 2 ] - A [ 1 * 3 + 0 ] * A [ 0 * 3 + 2 ] ) / determinant ;
inverse . matrix [ 2 * 3 + 0 ] = + ( A [ 1 * 3 + 0 ] * A [ 2 * 3 + 1 ] - A [ 2 * 3 + 0 ] * A [ 1 * 3 + 1 ] ) / determinant ;
inverse . matrix [ 2 * 3 + 1 ] = - ( A [ 0 * 3 + 0 ] * A [ 2 * 3 + 1 ] - A [ 2 * 3 + 0 ] * A [ 0 * 3 + 1 ] ) / determinant ;
inverse . matrix [ 2 * 3 + 2 ] = + ( A [ 0 * 3 + 0 ] * A [ 1 * 3 + 1 ] - A [ 1 * 3 + 0 ] * A [ 0 * 3 + 1 ] ) / determinant ;
vector_3 row0 = vector_3 ( inverse . matrix [ 0 * 3 + 0 ] , inverse . matrix [ 0 * 3 + 1 ] , inverse . matrix [ 0 * 3 + 2 ] ) ;
vector_3 row1 = vector_3 ( inverse . matrix [ 1 * 3 + 0 ] , inverse . matrix [ 1 * 3 + 1 ] , inverse . matrix [ 1 * 3 + 2 ] ) ;
vector_3 row2 = vector_3 ( inverse . matrix [ 2 * 3 + 0 ] , inverse . matrix [ 2 * 3 + 1 ] , inverse . matrix [ 2 * 3 + 2 ] ) ;
row0 . normalize ( ) ;
row1 . normalize ( ) ;
row2 . normalize ( ) ;
inverse = matrix_3x3 : : create_from_rows ( row0 , row1 , row2 ) ;
//inverse.debug("inverse");
return inverse ;
}
}
void matrix_3x3 : : debug ( char * title )
void matrix_3x3 : : debug ( char * title )